首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-parameter inverse Gaussian distribution is defined and moment estimators and maximum likelihood estimators are obtained. The moment estimators are found in closed form and their asymprotic normality is proven. A sufficient condition is provided for the existence of the maximum likelihood estimators.  相似文献   

2.
Suppose that we have two components, each having a two-parameter exponential distribution. Suppose further that these components are conditionally independent, sharing a common random hazard rate and possessing unequal, fixed, unknown location parameters. We develop estimators for the minimum and maximum of these location parameters when the random hazard rate has an inverse Gaussian distribution. Performance comparisons are made among the proposed estimators. Maximum likelihood estimators are shown to be inadmissible.  相似文献   

3.
James-Stein estimators are proposed for the #-parameter of an inverse Gaussian #G# distribution. The estimators of this class have smaller expected quadratic loss than the maximum likelihood estimator usually employed when analysing real sets of data. This problem is also studied for the case of an unknown nuisance parameter. Finally, improved estimators are considered for # in the two sample problem.  相似文献   

4.
In this article, we investigate the monotonicity of the density, failure rate, and mean residual life functions of the log-exponential inverse Gaussian distribution. It turns out that, in this case, the monotonicity of the density, failure rate, and mean residual life functions take different forms depending on the range of the parameters. Maximum likelihood estimators of the critical points of the density, failure rate, and mean residual life functions of the model are evaluated using Monte Carlo simulations. An example of a published data set is used to illustrate the estimation of the critical points.  相似文献   

5.
The comparison of an estimated parameter to its standard error, the Wald test, is a well known procedure of classical statistics. Here we discuss its application to graphical Gaussian model selection. First we derive the Fisher information matrix and its inverse about the parameters of any graphical Gaussian model. Both the covariance matrix and its inverse are considered and a comparative analysis of the asymptotic behaviour of their maximum likelihood estimators (m.l.e.s) is carried out. Then we give an example of model selection based on the standard errors. The method is shown to produce almost identical inference to likelihood ratio methods in the example considered.  相似文献   

6.
The maximum likelihood estimation for the critical points of the failure rate and the mean residual life function are presented in the case of mixture inverse Gaussian model. Several important data sets are analyzed from this point of view. For each of the data sets, Bootstrapping is used to construct confidence intervals of the critical points.  相似文献   

7.
The uniformly minimum variance unbiased estimator (UMVUE) of the variance of the inverse Gaussian distribution is shown to be inadmissible in terms of the mean squared error, and a dominating estimator is given. A dominating estimator to the maximum likelihood estimator (MLE) of the variance and estimators dominating the MLE's and the UMVUE's of other parameters are also given.  相似文献   

8.
This paper considers the problem of analysis of covariance (ANCOVA) under the assumption of inverse Gaussian distribution for response variable. We develop the essential methodology for estimating the model parameters via maximum likelihood method. The general form of the maximum likelihood estimator is obtained in color closed form. Adjusted treatment effects and adjusted covariate effects are given, too. We also provide the asymptotic distribution of the proposed estimators. A simulation study and a real world application are also performed to illustrate and evaluate the proposed methodology.  相似文献   

9.

In this paper, we discuss an estimation problem of the mean in the inverse Gaussian distribution with a known coefficient of variation. Two types of linear estimators for the mean, the linear minimum variance unbiased estimator and the linear minimum mean squared error estimator, are constructed by using the squared error loss function and their properties are examined. It is observed that, for small samples the performance of the proposed estimators is better than that of the maximum likelihood estimator, when the coefficient of variation is large.  相似文献   

10.
This paper presents procedures for percentile estimation in the three-parameter inverse Gaussian (IG3) and the two-parameter inverse Gaussian (IG2) distributions. All procedures require first the estimation of distribution parameters and second the computation of the desired quantile at the estimated parameters. Parameter estimation is accomplished by maximum likelihood (ML) or a mixed moments (MXM) method. A Newton-Rahpson (NR) procedure is used for inverting the CDF. Simulation and asymptotic results are given for the resulting estimators. Two sets of real data are used to illustrate the procedures.  相似文献   

11.
A simple linear regression model with no intercept term for the situation where the response variable obeys an inverse Gaussian distribution and the coefficient of variation is an unknown constant is discussed. Maximum likelihood estimators and the confidence limits of the regression parameter are obtained. Finally uniformly minimum variance unbiased estimators of parameters are given.  相似文献   

12.
ABSTRACT

In this paper, we propose a new probability model called the log-EIG distribution for lifetime data analysis. Some important properties of the proposed model and maximum likelihood estimation of its parameters are discussed. Its relationship with the exponential inverse Gaussian distribution is similar to that of the lognormal and the normal distributions. Through applications to well-known datasets, we show that the log-EIG distribution competes well, and in some instances even provides a better fit than the commonly used lifetime models such as the gamma, lognormal, Weibull and inverse Gaussian distributions. It can accommodate situations where an increasing failure rate model is required as well as those with a decreasing failure rate at larger times.  相似文献   

13.
Statistical inferences for the geometric process (GP) are derived when the distribution of the first occurrence time is assumed to be inverse Gaussian (IG). An α-series process, as a possible alternative to the GP, is introduced since the GP is sometimes inappropriate to apply some reliability and scheduling problems. In this study, statistical inference problem for the α-series process is considered where the distribution of first occurrence time is IG. The estimators of the parameters α, μ, and σ2 are obtained by using the maximum likelihood (ML) method. Asymptotic distributions and consistency properties of the ML estimators are derived. In order to compare the efficiencies of the ML estimators with the widely used nonparametric modified moment (MM) estimators, Monte Carlo simulations are performed. The results showed that the ML estimators are more efficient than the MM estimators. Moreover, two real life datasets are given for application purposes.  相似文献   

14.
We consider a random regression model with several-fold change-points. The results for one change-point are generalized. The maximum likelihood estimator of the parameters is shown to be consistent, and the asymptotic distribution for the estimators of the coefficients is shown to be Gaussian. The estimators of the change-points converge, with n ?1 rate, to the vector whose components are the left end points of the maximizing interval with respect to each change-point. The likelihood process is asymptotically equivalent to the sum of independent compound Poisson processes.  相似文献   

15.
Summary.  A representation is developed that expresses the bivariate survivor function as a function of the hazard function for truncated failure time variables. This leads to a class of nonparametric survivor function estimators that avoid negative mass. The transformation from hazard function to survivor function is weakly continuous and compact differentiable, so that such properties as strong consistency, weak convergence to a Gaussian process and bootstrap applicability for a hazard function estimator are inherited by the corresponding survivor function estimator. The set of point mass assignments for a survivor function estimator is readily obtained by using a simple matrix calculation on the set of hazard rate estimators. Special cases arise from a simple empirical hazard rate estimator, and from an empirical hazard rate estimator following the redistribution of singly censored observations within strips. The latter is shown to equal van der Laan's repaired nonparametric maximum likelihood estimator, for which a Greenwood-like variance estimator is given. Simulation studies are presented to compare the moderate sample performance of various nonparametric survivor function estimators.  相似文献   

16.
A new two-parameter distribution over the unit interval, called the Unit-Inverse Gaussian distribution, is introduced and studied in detail. The proposed distribution shares many properties with other known distributions on the unit interval, such as Beta, Johnson SB, Unit-Gamma, and Kumaraswamy distributions. Estimation of the parameters of the proposed distribution are obtained by transforming the data to the inverse Gaussian distribution. Unlike most distributions on the unit interval, the maximum likelihood or method of moments estimators of the parameters of the proposed distribution are expressed in simple closed forms which do not need iterative methods to compute. Application of the proposed distribution to a real data set shows better fit than many known two-parameter distributions on the unit interval.  相似文献   

17.
Based on multiply Type-II censored samples of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two-parameter exponential distributions. In the one-parameter set-up, the posterior density is obtained under the assumption that the prior distribution is given by an inverse Gamma distribution, and the Bayes estimator with respect to squared error loss is calculated. Its performance is illustrated by a numerical example and compared with two non-Bayesian estimators, namely the BLUE and the approximate maximum likelihood estimator (AMLE). Moreover, prediction of future failure times is considered. Minimum risk equivariant estimators and predictors are deduced from the given results. Finally, similar results are presented for the two-parameter situation.  相似文献   

18.
Bayes estimators of reliability for the lognormal failure distribution with two parameters (M,∑) are obtained both for informative priors of normal-gamma type and for the vague prior of Jeffreys. The estimators are in terms of the t-distribution function. The Bayes estimators are compared with the maximum likelihood and minimum variance unbiased estimators of reliabil-ity using Monte Carlo simulations.  相似文献   

19.
The linear Toeplitz covariance structure model of order one is considered. We give some elegant explicit expressions of the Locally Minimum Variance Quadratic Unbiased Estimators of its covariance parameters. We deduce from a Monte Carlo method some properties of their Gaussian maximum likelihood estimators. Finally, for small sample sizes, these two types of estimators are compared with the intuitive empirical estimators and it is shown that the empirical biased estimators should be used.  相似文献   

20.
This paper provides the modified likelihood ratio criterion for testing whether the mean of the inverse Gaussian distribution can be set to unity giving rise to Standard form of the Wald distribution. Estimates of probability of correct selection has been obtained on the basis of a Monte Carlo study of 1,000 samples. Finally a set of adaptive estimators for the parameters are proposed and studied on the basis of data generated from the two distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号