首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, an importance sampling (IS) method for the posterior expectation of a non linear function in a Bayesian vector autoregressive (VAR) model is developed. Most Bayesian inference problems involve the evaluation of the expectation of a function of interest, usually a non linear function of the model parameters, under the posterior distribution. Non linear functions in Bayesian VAR setting are difficult to estimate and usually require numerical methods for their evaluation. A weighted IS estimator is used for the evaluation of the posterior expectation. With the cross-entropy (CE) approach, the IS density is chosen from a specified family of densities such that the CE distance or the Kullback–Leibler divergence between the optimal IS density and the importance density is minimal. The performance of the proposed algorithm is assessed in an iterated multistep forecasting of US macroeconomic time series.  相似文献   

2.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.  相似文献   

3.
Accelerated life testing of a product under more severe than normal conditions is commonly used to reduce test time and costs. Data collected at such accelerated conditions are used to obtain estimates of the parameters of a stress translation function. This function is then used to make inference about the product's life under normal operating conditions. We consider the problem of accelerated life tests when the product of interest is a p component series system. Each of the components is assumed to have an independent Weibull time to failure distribution with different shape parameters and different scale parameters which are increasing functions stress. A general model i s used for the scale parameter includes the standard engineering models as special This model also has an appealing biological interpretation  相似文献   

4.
Abstract

We propose a simple procedure based on an existing “debiased” l1-regularized method for inference of the average partial effects (APEs) in approximately sparse probit and fractional probit models with panel data, where the number of time periods is fixed and small relative to the number of cross-sectional observations. Our method is computationally simple and does not suffer from the incidental parameters problems that come from attempting to estimate as a parameter the unobserved heterogeneity for each cross-sectional unit. Furthermore, it is robust to arbitrary serial dependence in underlying idiosyncratic errors. Our theoretical results illustrate that inference concerning APEs is more challenging than inference about fixed and low-dimensional parameters, as the former concerns deriving the asymptotic normality for sample averages of linear functions of a potentially large set of components in our estimator when a series approximation for the conditional mean of the unobserved heterogeneity is considered. Insights on the applicability and implications of other existing Lasso-based inference procedures for our problem are provided. We apply the debiasing method to estimate the effects of spending on test pass rates. Our results show that spending has a positive and statistically significant average partial effect; moreover, the effect is comparable to found using standard parametric methods.  相似文献   

5.
We consider a Bayesian deterministically trending dynamic time series model with heteroscedastic error variance, in which there exist multiple structural changes in level, trend and error variance, but the number of change-points and the timings are unknown. For a Bayesian analysis, a truncated Poisson prior and conjugate priors are used for the number of change-points and the distributional parameters, respectively. To identify the best model and estimate the model parameters simultaneously, we propose a new method by sequentially making use of the Gibbs sampler in conjunction with stochastic approximation Monte Carlo simulations, as an adaptive Monte Carlo algorithm. The numerical results are in favor of our method in terms of the quality of estimates.  相似文献   

6.
A new Markov chain Monte Carlo method for the Bayesian analysis of finite mixture distributions with an unknown number of components is presented. The sampler is characterized by a state space consisting only of the number of components and the latent allocation variables. Its main advantage is that it can be used, with minimal changes, for mixtures of components from any parametric family, under the assumption that the component parameters can be integrated out of the model analytically. Artificial and real data sets are used to illustrate the method and mixtures of univariate and of multivariate normals are explicitly considered. The problem of label switching, when parameter inference is of interest, is addressed in a post-processing stage.  相似文献   

7.
Traditionally, time series analysis involves building an appropriate model and using either parametric or nonparametric methods to make inference about the model parameters. Motivated by recent developments for dimension reduction in time series, an empirical application of sufficient dimension reduction (SDR) to nonlinear time series modelling is shown in this article. Here, we use time series central subspace as a tool for SDR and estimate it using mutual information index. Especially, in order to reduce the computational complexity in time series, we propose an efficient estimation method of minimal dimension and lag using a modified Schwarz–Bayesian criterion, when either of the dimensions and the lags is unknown. Through simulations and real data analysis, the approach presented in this article performs well in autoregression and volatility estimation.  相似文献   

8.
Structural equation models (SEM) have been extensively used in behavioral, social, and psychological research to model relations between the latent variables and the observations. Most software packages for the fitting of SEM rely on frequentist methods. Traditional models and software are not appropriate for analysis of the dependent observations such as time-series data. In this study, a structural equation model with a time series feature is introduced. A Bayesian approach is used to solve the model with the aid of the Markov chain Monte Carlo method. Bayesian inferences as well as prediction with the proposed time series structural equation model can also reveal certain unobserved relationships among the observations. The approach is successfully employed using real Asian, American and European stock return data.  相似文献   

9.
In this paper, we consider fiducial inference for the unknown parameters of the Birnbaum-Saunders distribution. Two generalized fiducial distributions of the parameters are obtained. One is based on the inverse of the structural equation, and the fiducial estimates of the parameters are obtained by a simulation method. The other is based on the method of [Hannig J. Generalized fiducial inference via discretization. Stat. Sinica. 2013;23:489–514], then we use adaptive rejection Metropolis sampling to get the fiducial estimates. We compare the fiducial estimates with the maximum likelihood estimates and Bayesian estimates by simulations. Two real data sets are analysed for illustration.  相似文献   

10.
朱慧明等 《统计研究》2014,31(7):97-104
针对不可观测异质性非时变假设导致的删失变量偏差及推断无效问题,构建贝叶斯隐马尔科夫异质面板模型,刻画截面个体间的动态时变不可观测异质性,诊断经济系统环境中可能存在的隐性变点,设计相应的马尔科夫链蒙特卡洛抽样算法估计模型参数,并对中国各地区的金融发展与城乡收入差距关系进行实证分析,捕捉到金融发展与城乡收入差距间长期稳定关系的隐性变化,发现了区域个体不可观测异质性存在的动态时变特征。研究结果表明各参数的迭代轨迹收敛且估计误差非常小,验证了贝叶斯隐马尔科夫异质面板模型的有效性。  相似文献   

11.
A Bayesian analysis is presented of a time series which is the sum of a stationary component with a smooth spectral density and a deterministic component consisting of a linear combination of a trend and periodic terms. The periodic terms may have known or unknown frequencies. The advantage of our approach is that different features of the data—such as the regression parameters, the spectral density, unknown frequencies and missing observations—are combined in a hierarchical Bayesian framework and estimated simultaneously. A Bayesian test to detect deterministic components in the data is also constructed. By using an asymptotic approximation to the likelihood, the computation is carried out efficiently using the Markov chain Monte Carlo method in O ( Mn ) operations, where n is the sample size and M is the number of iterations. We show empirically that our approach works well on real and simulated samples.  相似文献   

12.
Summary.  A stochastic discrete time version of the susceptible–infected–recovered model for infectious diseases is developed. Disease is transmitted within and between communities when infected and susceptible individuals interact. Markov chain Monte Carlo methods are used to make inference about these unobserved populations and the unknown parameters of interest. The algorithm is designed specifically for modelling time series of reported measles cases although it can be adapted for other infectious diseases with permanent immunity. The application to observed measles incidence series motivates extensions to incorporate age structure as well as spatial epidemic coupling between communities.  相似文献   

13.
Synthetic likelihood is an attractive approach to likelihood-free inference when an approximately Gaussian summary statistic for the data, informative for inference about the parameters, is available. The synthetic likelihood method derives an approximate likelihood function from a plug-in normal density estimate for the summary statistic, with plug-in mean and covariance matrix obtained by Monte Carlo simulation from the model. In this article, we develop alternatives to Markov chain Monte Carlo implementations of Bayesian synthetic likelihoods with reduced computational overheads. Our approach uses stochastic gradient variational inference methods for posterior approximation in the synthetic likelihood context, employing unbiased estimates of the log likelihood. We compare the new method with a related likelihood-free variational inference technique in the literature, while at the same time improving the implementation of that approach in a number of ways. These new algorithms are feasible to implement in situations which are challenging for conventional approximate Bayesian computation methods, in terms of the dimensionality of the parameter and summary statistic.  相似文献   

14.

Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.  相似文献   

15.
In this article we consider the problem of detecting changes in level and trend in time series model in which the number of change-points is unknown. The approach of Bayesian stochastic search model selection is introduced to detect the configuration of changes in a time series. The number and positions of change-points are determined by a sequence of change-dependent parameters. The sequence is estimated by its posterior distribution via the maximum a posteriori (MAP) estimation. Markov chain Monte Carlo (MCMC) method is used to estimate posterior distributions of parameters. Some actual data examples including a time series of traffic accidents and two hydrological time series are analyzed.  相似文献   

16.
Accelerated life testing of a product under more severe than normal conditions is cawiionly used to reduce test time and cost. Data collected at such accelerated conditions is used to obtain estimates of parameters of a stress translation function which is then used to make inference about the product's, per" formance under normal conditions. This problem is considered when the product is a p component series system with WeibuH distributed component lifetimes liaving a caimon shape parameter. A general stress translation function is used and estimates of model parameters are obtained for various censoring schemes.  相似文献   

17.
This article presents a model-based signal extraction seasonal adjustment procedure to extract estimates of the independent unobserved seasonal and nonseasonal components from an observed time series. The decomposition yields a one-sided filter that is optimal for adjusting the most recent observation under the assumption of using only the past observed series. Some advantages of this procedure are that no forecasts are required for implementation and there are no problems of revision of estimates or questions of concurrent adjustment. Comparisons are made with existing procedures using two-sided filters.  相似文献   

18.
Classical bridge regression is known to possess many desirable statistical properties such as oracle, sparsity, and unbiasedness. One outstanding disadvantage of bridge regularization, however, is that it lacks a systematic approach to inference, reducing its flexibility in practical applications. In this study, we propose bridge regression from a Bayesian perspective. Unlike classical bridge regression that summarizes inference using a single point estimate, the proposed Bayesian method provides uncertainty estimates of the regression parameters, allowing coherent inference through the posterior distribution. Under a sparsity assumption on the high-dimensional parameter, we provide sufficient conditions for strong posterior consistency of the Bayesian bridge prior. On simulated datasets, we show that the proposed method performs well compared to several competing methods across a wide range of scenarios. Application to two real datasets further revealed that the proposed method performs as well as or better than published methods while offering the advantage of posterior inference.  相似文献   

19.
We consider the estimation of life length of people who were born in the seventeenth or eighteenth century in England. The data consist of a sequence of times of life events that is either ended by a time of death or is right-censored by an unobserved time of migration. We propose a semi parametric model for the data and use a maximum likelihood method to estimate the unknown parameters in this model. We prove the consistency of the maximum likelihood estimators and describe an algorithm to obtain the estimates numerically. We have applied the algorithm to data and the estimates found are presented.  相似文献   

20.
This paper describes the Bayesian inference and prediction of the two-parameter Weibull distribution when the data are Type-II censored data. The aim of this paper is twofold. First we consider the Bayesian inference of the unknown parameters under different loss functions. The Bayes estimates cannot be obtained in closed form. We use Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples and it has been used to compute the Bayes estimates and also to construct symmetric credible intervals. Further we consider the Bayes prediction of the future order statistics based on the observed sample. We consider the posterior predictive density of the future observations and also construct a predictive interval with a given coverage probability. Monte Carlo simulations are performed to compare different methods and one data analysis is performed for illustration purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号