首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Let {Xn} be a generalized autoregressive process of order ρ defined by Xnn(Xn-ρ,…,Xn-1)-ηm, where {φn} is a sequence of i.i.d. random maps taking values on H, and {ηn} is a sequence of i.i.d. random variables. Let H be a collection of Borel measurable functions on RP to R. By considering the associated Markov process, we obtain sufficient conditions for stationarity, (geometric) ergodicity of {Xn}.  相似文献   

2.
Consider an infinite sequence of independent random variables having common continuous c.d.f. F. For 1 ⩽ in, let Xi:n denote the ith order statistic of the first n random variables, and let {X(n), n ⩾ 1} be the sequence of upper record values. We examine the similarities and differences between the dependence structures of the Xi:n's and the X(n)'s, with an emphasis on the latter. We present an interesting situation involving a characterization of F using the moment sequence of records. We obtain characterizations based on the properties of certain regression functions associated with order statistics, record values, and the original observations. We discuss the resemblance between some known and some new characterizations based on order statistics, record values and those based on the properties of truncated F.  相似文献   

3.
Let X(1),…,X(n) be the order statistics of n iid distributed random variables. We prove that (X(i)) have a certain Markov property for general distributions and secondly that the order statistics have monotone conditional regression dependence. Both properties are well known in the case of continuous distributions.  相似文献   

4.
Let X (n) and X (1) be the largest and smallest order statistics, respectively, of a random sample of fixed size n. Quite generally, X (1) and X (n) are approximately independent for n sufficiently large. In this article, we study the dependence properties of random extremes in terms of their copula, when the sample size has a left-truncated binomial distribution and show that they tend to be more dependent in this case. We also give closed-form formulas for the measures of association Kendall's τ and Spearman's ρ to measure the amount of dependence between two extremes.  相似文献   

5.
Let (X1,X2, …,Xn) be jointly distributed random variables. Define Xn:n = max(X1,X2, …,Xn).Bounds on E(Xn:n), obtained by putting constraints on the distributions and/or dependence structure of the Xi's, are surveyed.  相似文献   

6.
Expectile regression, as a general M smoother, is used to capture the tail behaviour of a distribution. Let (X 1,Y 1),…,(X n ,Y n ) be i.i.d. rvs. Denote by v(x) the unknown τ-expectile regression curve of Y conditional on X, and by v n (x) its kernel smoothing estimator. In this paper, we prove the strong uniform consistency rate of v n (x) under general conditions. Moreover, using strong approximations of the empirical process and extreme value theory, we consider the asymptotic maximal deviation sup0≤x≤1|v n (x)?v(x)|. According to the asymptotic theory, we construct simultaneous confidence bands around the estimated expectile function. Furthermore, we apply this confidence band to temperature analysis. Taking Berlin and Taipei as an example, we investigate the temperature risk drivers to these two cities.  相似文献   

7.
In drug development, non‐inferiority tests are often employed to determine the difference between two independent binomial proportions. Many test statistics for non‐inferiority are based on the frequentist framework. However, research on non‐inferiority in the Bayesian framework is limited. In this paper, we suggest a new Bayesian index τ = P(π1 > π2 ? Δ0 | X1,X2), where X1 and X2 denote binomial random variables for trials n1 and n2, and parameters π1 and π2, respectively, and the non‐inferiority margin is Δ0 > 0. We show two calculation methods for τ, an approximate method that uses normal approximation and an exact method that uses an exact posterior PDF. We compare the approximate probability with the exact probability for τ. Finally, we present the results of actual clinical trials to show the utility of index τ. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Let X1,X2,…,Xp be p random variables with cdf's F1(x),F2(x),…,Fp(x)respectively. Let U = min(X1,X2,…,Xp) and V = max(X1,X2,…,Xp).In this paper we study the problem of uniquely determining and estimating the marginal distributions F1,F2,…,Fp given the distribution of U or of V.

First the problem of competing and complementary risks are introduced with examples and the corresponding identification problems are considered when the X1's are independently distributed and U(V) is identified, as well as the case when U(V) is not identified. The case when the X1's are dependent is considered next. Finally the problem of estimation is considered.  相似文献   

10.
In this article we obtain some novel results on pairwise quasi-asymptotically independent (pQAI) random variables. Concretely speaking, let X1, …, Xn be n real-valued pQAI random variables, and W1, …, Wn be another n non negative and arbitrarily dependent random variables, but independent of X1, …, Xn. Under some mild conditions, we prove that W1X1, …, WnXn are still pQAI as well. Our result is in a general setting whether the primary random variables X1, …, Xn are heavy-tailed or not. Finally, a special case of above result is applied to risk theory for investigating the finite-time ruin probability for a discrete-time risk model with a wide type of dependence structure.  相似文献   

11.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

12.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

13.
We consider the problem of robustness in hierarchical Bayes models. Let X = (X1,X2, … ,Xp)τ be a random vector, the X1 being independently distributed as N(θ12) random variables (σ2 known), while the θ1 are thought to be exchangeable, modelled as i.i.d, N(μ,τ2). The hyperparameter µ is given a noninformative prior distribution π(μ) = 1 and τ2 is assumed to be independent of µ having a distribution g(τ2) lying in a certain class of distributions g. For several g's, including e-contaminations classes and density ratio classes we determine the range of the posterior mean of θ1 as g ranges over g.  相似文献   

14.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

15.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

16.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

17.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

18.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

19.
Let X1,…,Xn be exchangeable normal variables with a common correlation p, and let X(1) > … > X(n) denote their order statistics. The random variable σni=nk+1xi, called the selection differential by geneticists, is of particular interest in genetic selection and related areas. In this paper we give results concerning a conjecture of Tong (1982) on the distribution of this random variable as a function of ρ. The same technique used can be applied to yield more general results for linear combinations of order statistics from elliptical distributions.  相似文献   

20.
Let X1, X2,… be a sequence of independent random variables with distribution functions F1, where 1 ≤ in, and for each n ≥ 1 let X1,n ≤… ≤ Xn,n denote the order statistics of the first n random variables. Under suitable hypotheses about the F1, we characterize the limit distribution functions H(x) for which P(Xk,n ? anx + bn) → H(x), where an > 0 and bn are real constants. We consider the cases where κ = κ(n) satisfies √n {κ(n)/n — λ} → 0 and √n {κ(n)/n — λ} → ∞ separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号