首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are several failure modes may cause system failed in reliability and survival analysis. It is usually assumed that the causes of failure modes are independent each other, though this assumption does not always hold. Dependent competing risks modes from Marshall-Olkin bivariate Weibull distribution under Type-I progressive interval censoring scheme are considered in this paper. We derive the maximum likelihood function, the maximum likelihood estimates, the 95% Bootstrap confidence intervals and the 95% coverage percentages of the parameters when shape parameter is known, and EM algorithm is applied when shape parameter is unknown. The Monte-Carlo simulation is given to illustrate the theoretical analysis and the effects of parameters estimates under different sample sizes. Finally, a data set has been analyzed for illustrative purposes.  相似文献   

2.
Recently, exact inference under hybrid censoring scheme has attracted extensive attention in the field of reliability analysis. However, most of the authors neglect the possibility of competing risks model. This paper mainly discusses the exact likelihood inference for the analysis of generalized type-I hybrid censoring data with exponential competing failure model. Based on the maximum likelihood estimates for unknown parameters, we establish the exact conditional distribution of parameters by conditional moment generating function, and then obtain moment properties as well as exact confidence intervals (CIs) for parameters. Furthermore, approximate CIs are constructed by asymptotic distribution and bootstrap method as well. We also compare their performances with exact method through the use of Monte Carlo simulations. And finally, a real data set is analysed to illustrate the validity of all the methods developed here.  相似文献   

3.
The model of independent competing risks provides no information for the assessment of competing failure modes if the failure mechanisms underlying these modes are coupled. Models for dependent competing risks in the literature can be distinguished on the basis of the functional behaviour of the conditional probability of failure due to a particular failure mode given that the failure time exceeds a fixed time, as a function of time. There is an interesting link between monotonicity of such conditional probability and dependence between failure time and failure mode, via crude hazard rates. In this paper, we propose tests for testing the dependence between failure time and failure mode using the crude hazards and using the conditional probabilities mentioned above. We establish the equivalence between the two approaches and provide an asymptotically efficient weight function under a sequence of local alternatives. The tests are applied to simulated data and to mortality follow-up data.  相似文献   

4.
Comparative lifetime experiments are important when the object of a study is to determine the relative merits of two competing duration of life products. This study considers the interval estimation for two Weibull populations when joint Type-II progressive censoring is implemented. We obtain the conditional maximum likelihood estimators of the two Weibull parameters under this scheme. Moreover, simultaneous approximate confidence region based on the asymptotic normality of the maximum likelihood estimators are also discussed and compared with two Bootstrap confidence regions. We consider the behavior of probability of failure structure with different schemes. A simulation study is performed and an illustrative example is also given.  相似文献   

5.
This article extends the analysis of the Seemingly Unrelated Regression (SUR) Tobit model for two right-censored dependent variables by modeling its nonlinear dependence structure through the rotated by 180 degrees version of the Clayton copula. An advantage of our approach is to provide unbiased point estimates of the marginal and copula parameters. Moreover, we discuss the construction of confidence intervals using bootstrap resampling procedures. The results of the performed simulation study demonstrate the good performance of the proposed methods. We illustrate our procedures using bivariate customer churn data from a Brazilian commercial bank.  相似文献   

6.
In reliability analysis, it is common to consider several causes, either mechanical or electrical, those are competing to fail a unit. These causes are called “competing risks.” In this paper, we consider the simple step-stress model with competing risks for failure from Weibull distribution under progressive Type-II censoring. Based on the proportional hazard model, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters. The confidence intervals are derived by using the asymptotic distributions of the MLEs and bootstrap method. For comparison, we obtain the Bayesian estimates and the highest posterior density (HPD) credible intervals based on different prior distributions. Finally, their performance is discussed through simulations.  相似文献   

7.
Accelerated life testing is widely used in product life testing experiments since it provides significant reduction in time and cost of testing. In this paper, assuming that the lifetime of items under use condition follow the two-parameter Pareto distribution of the second kind, partially accelerated life tests based on progressively Type-II censored samples are considered. The likelihood equations of the model parameters and the acceleration factor are reduced to a single nonlinear equation to be solved numerically to obtain the maximum-likelihood estimates (MLEs). Based on normal approximation to the asymptotic distribution of MLEs, the approximate confidence intervals (ACIs) for the parameters are derived. Two bootstrap CIs are also proposed. The classical Bayes estimates cannot be obtained in explicit form, so we propose to apply Markov chain Monte Carlo method to tackle this problem, which allows us to construct the credible interval of the involved parameters. Analysis of a simulated data set has also been presented for illustrative purposes. Finally, a Monte Carlo simulation study is carried out to investigate the precision of the Bayes estimates with MLEs and to compare the performance of different corresponding CIs considered.  相似文献   

8.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of k competing products with regard to their reliability. In this paper, when a joint progressively Type-II censored sample arising from k independent exponential populations is available, the conditional MLEs of the k exponential mean parameters are derived. Their conditional moment generating functions and exact densities are obtained, using which exact confidence intervals are developed for the parameters. Moreover, approximate confidence intervals based on the asymptotic normality of the MLEs and credible confidence regions from a Bayesian viewpoint are discussed. An empirical evaluation of the exact, approximate, bootstrap, and Bayesian intervals is also made in terms of coverage probabilities and average widths. Finally, an example is presented in order to illustrate all the methods of inference developed here.  相似文献   

9.
Three Mixed Proportional Hazard models for estimation of unemployment duration when attrition is present are considered. The virtue of these models is that they take account of dependence between failure times in a multivariate failure time distribution context. However, identification in dependent competing risks models is not straightforward. We show that these models, independently derived, are special cases of a general frailty model. It is also demonstrated that the three models are identified by means of identification of the general model. An empirical example illustrates the approach to model dependent failure times.  相似文献   

10.
Jennlson and Turnbull (1984,1989) proposed procedures for repeated confidence intervals for parameters of interest In a clinical trial monitored with group sequential methods. These methods are extended for use with stochastic curtailment procedures for two samples in the estimation of differences of means, differences of proportions, odds ratios, and hazard ratios. Methods are described for constructing 1) confidence intervals for these estimates at repeated times In the course of a trial, and 2) prediction intervals for predicted estimates at the end of a trial. Specific examples from several clinical trials are presented.  相似文献   

11.
We construct bootstrap confidence intervals for smoothing spline estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from .exponential families. Several vari- ations of bootstrap confidence intervals are considered and compared. We find that the commonly used ootstrap percentile intervals are inferior to the T intervals and to intervals based on bootstrap estimation of mean squared errors. The best variations of the bootstrap confidence intervals behave similar to the well known Bayesian confidence intervals. These bootstrap confidence intervals have an average coverage probability across the function being estimated, as opposed to a pointwise property.  相似文献   

12.
Likelihood-ratio tests (LRTs) are often used for inferences on one or more logistic regression coefficients. Conventionally, for given parameters of interest, the nuisance parameters of the likelihood function are replaced by their maximum likelihood estimates. The new function created is called the profile likelihood function, and is used for inference from LRT. In small samples, LRT based on the profile likelihood does not follow χ2 distribution. Several corrections have been proposed to improve LRT when used with small-sample data. Additionally, complete or quasi-complete separation is a common geometric feature for small-sample binary data. In this article, for small-sample binary data, we have derived explicitly the correction factors of LRT for models with and without separation, and proposed an algorithm to construct confidence intervals. We have investigated the performances of different LRT corrections, and the corresponding confidence intervals through simulations. Based on the simulation results, we propose an empirical rule of thumb on the use of these methods. Our simulation findings are also supported by real-world data.  相似文献   

13.
In this paper, a new censoring scheme named by adaptive progressively interval censoring scheme is introduced. The competing risks data come from Marshall–Olkin extended Chen distribution under the new censoring scheme with random removals. We obtain the maximum likelihood estimators of the unknown parameters and the reliability function by using the EM algorithm based on the failure data. In addition, the bootstrap percentile confidence intervals and bootstrap-t confidence intervals of the unknown parameters are obtained. To test the equality of the competing risks model, the likelihood ratio tests are performed. Then, Monte Carlo simulation is conducted to evaluate the performance of the estimators under different sample sizes and removal schemes. Finally, a real data set is analyzed for illustration purpose.  相似文献   

14.
Based on the large-sample normal distribution of the sample log odds ratio and its asymptotic variance from maximum likelihood logistic regression, shortest 95% confidence intervals for the odds ratio are developed. Although the usual confidence interval on the odds ratio is unbiased, the shortest interval is not. That is, while covering the true odds ratio with the stated probability, the shortest interval covers some values below the true odds ratio with higher probability. The upper and lower limits of the shortest interval are shifted to the left of those of the usual interval, with greater shifts in the upper limits. With the log odds model γ + , in which X is binary, simulation studies showed that the approximate average percent difference in length is 7.4% for n (sample size) = 100, and 3.8% for n = 200. Precise estimates of the covering probabilities of the two types of intervals were obtained from simulation studies, and are compared graphically. For odds ratio estimates greater (less) than one, shortest intervals are more (less) likely to include one than are the usual intervals. The usual intervals are likelihood-based and the shortest intervals are not. The usual intervals have minimum expected length among the class of unbiased intervals. Shortest intervals do not provide important advantages over the usual intervals, which we recommend for practical use.  相似文献   

15.
A smoothing procedure for discrete time failure data is proposed which allows for the inclusion of covariates. This purely nonparametric method is based on discrete or continuous kernel smoothing techniques that gives a compromise between the data and smoothness. The method may be used as an exploratory tool to uncover the underlying structure or as an alternative to parametric methods when prediction is the primary objective. Confidence intervals are considered and alternative techniques of cross validation based choices of smoothing parameters are investigated.  相似文献   

16.
The proportional hazards model is the most commonly used model in regression analysis of failure time data and has been discussed by many authors under various situations (Kalbfleisch & Prentice, 2002. The Statistical Analysis of Failure Time Data, Wiley, New York). This paper considers the fitting of the model to current status data when there exist competing risks, which often occurs in, for example, medical studies. The maximum likelihood estimates of the unknown parameters are derived and their consistency and convergence rate are established. Also we show that the estimates of regression coefficients are efficient and have asymptotically normal distributions. Simulation studies are conducted to assess the finite sample properties of the estimates and an illustrative example is provided. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

17.
In the present paper, simultaneous confidence interval estimates are constructed for the mortality measures RSMR. based on propor¬tional mortality measures SPMR. in epidemiologic studies for several competing risks of death to which the individuals in the study are exposed. It is demonstrated that, under a reasonable assumption, the joint sampling distribution of the statistics X. = RSMR./SPMR. for M competing risks9 may be approximated by means of a multi-variafe normal distribution, Sidak's (1967, 1968) mulfivariate normal probability inequalities are applied to construct the simultaneous confidence intervals for the measures RSMR., i=l3 2, ..., M. These are valid regardless of the covariance structure among the risks, As a particular case if the risks may be assumed as independent, our confidence intervals reduce to those for a single measure RSMR., which are narrower than those of Kupper et al., (1978), In this sense, our paper generalizes the results presently available in the literature in two directions; first, to obtain narrower confidence limits, and second3 to discuss the case of competing risks of death irrespective of their covariance structure.  相似文献   

18.
Brown and Cohen (1974) considered the problem of interval estimation of the common mean of two normal populations based on independent random samples. They showed that if we take the usual confidence interval using the first sample only and centre it around an appropriate combined estimate of the common mean the resulting interval would contain the true value with higher probability. They also gave a sufficient condition which such a point estimate should satisfy. Bhattacharya and Shah (1978) showed that the estimates satisfying this condition are nearly identical to the mean of the first sample. In this paper we obtain a stronger sufficient condition which is satisfied by many point estimates when the size of the second sample exceeds ten.  相似文献   

19.
This paper extends the analysis of the bivariate Seemingly Unrelated Regression (SUN) Tobit model by modeling its nonlinear dependence structure through the Clayton copula. The ability to capture/model the lower tail dependence of the SUN Tobit model where some data are censored (generally, left-censored at zero) is an useful feature of the Clayton copula. We propose a modified version of the (classical) Inference Function for Margins (IFS) method by Joe and XP [H. Joe and J.J. XP, The estimation method of inference functions for margins for multivariate models, Tech. Rep. 166, Department of Statistics, University of British Columbia, 1996], which we refer to as Modified Inference Function for Margins (MIFF) method, to obtain the (point) estimates of the marginal and Clayton copula parameters. More specifically, we employ the (frequenting) data augmentation technique at the second stage of the IFS method (the first stage of the MIFF method is equivalent to the first stage of the IFS method) to generate the censored observations and then estimate the Clayton copula parameter. This process (data augmentation and copula parameter estimation) is repeated until convergence. Such modification at the second stage of the usual estimation method is justified in order to obtain continuous marginal distributions, which ensures the uniqueness of the resulting Clayton copula, as stated by Solar's [A. Solar, Fonctions de répartition à n dimensions et leurs marges, Publ. de l'Institut de Statistique de l'Université de Paris 8 (1959), pp. 229–231] theorem; and also to provide an unbiased estimate of the association parameter (the IFS method provides a biased estimate of the Clayton copula parameter in the presence of censored observations in both margins). Since the usual asymptotic approach, that is the computation of the asymptotic covariance matrix of the parameter estimates, is troublesome in this case, we also propose the use of resampling procedures (bootstrap methods, such as standard normal and percentile, by Efron and Tibshirani [B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, 1993] to obtain confidence intervals for the model parameters.  相似文献   

20.
Abstract

Recently, the study of the lifetime of systems in reliability and survival analysis in the presence of several causes of failure (competing risks) has attracted attention in the literature. In this paper, series and parallel systems with exponential lifetime for each item of the system are considered. Several causes of failure independently affect lifetime distributions and observations of failure times of the systems are considered under progressive Type-II censored scheme. For series systems, the maximum likelihood estimates of parameters are computed and confidence intervals for parameters of the model are obtained using Fisher information matrix. For parallel systems, the generalized EM algorithm which uses the Newton-Raphson algorithm inside the EM algorithm is used to compute the maximum likelihood estimates of parameters. Also, the standard errors of the maximum likelihood estimates are computed by using the supplemented EM algorithm. The simulation study confirms the good performance of the introduced approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号