首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.  相似文献   

2.
We consider the issue of performing accurate small-sample testing inference in beta regression models, which are useful for modeling continuous variates that assume values in (0,1), such as rates and proportions. We derive the Bartlett correction to the likelihood ratio test statistic and also consider a bootstrap Bartlett correction. Using Monte Carlo simulations we compare the finite sample performances of the two corrected tests to that of the standard likelihood ratio test and also to its variant that employs Skovgaard's adjustment; the latter is already available in the literature. The numerical evidence favors the corrected tests we propose. We also present an empirical application.  相似文献   

3.
Exact confidence interval estimation for accelerated life regression models with censored smallest extreme value (or Weibull) data is often impractical. This paper evaluates the accuracy of approximate confidence intervals based on the asymptotic normality of the maximum likelihood estimator, the asymptotic X2distribution of the likelihood ratio statistic, mean and variance correction to the likelihood ratio statistic, and the so-called Bartlett correction to the likelihood ratio statistic. The Monte Carlo evaluations under various degrees of time censoring show that uncorrected likelihood ratio intervals are very accurate in situations with heavy censoring. The benefits of mean and variance correction to the likelihood ratio statistic are only realized with light or no censoring. Bartlett correction tends to result in conservative intervals. Intervals based on the asymptotic normality of maximum likelihood estimators are anticonservative and should be used with much caution.  相似文献   

4.
In this article, we focus on some diagnostics for linear regression model with first-order autoregressive and symmetrical errors. The symmetrical class includes both light- and heavy-tailed univariate symmetrical distributions, which offers a more flexible framework for modeling. Maximum likelihood estimates are computed via the Fisher-score method. Score statistic and its adjustment are proposed for testing autocorrelation of the random errors. Local influence diagnostics are also derived for the model under some usual perturbation schemes. The performances of the test statistics are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.  相似文献   

5.
The class of inflated beta regression models generalizes that of beta regressions [S.L.P. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions, J. Appl. Stat. 31 (2004), pp. 799–815] by incorporating a discrete component that allows practitioners to model data on rates and proportions with observations that equal an interval limit. For instance, one can model responses that assume values in (0, 1]. The likelihood ratio test tends to be quite oversized (liberal, anticonservative) in inflated beta regressions estimated with a small number of observations. Indeed, our numerical results show that its null rejection rate can be almost twice the nominal level. It is thus important to develop alternative testing strategies. This paper develops small-sample adjustments to the likelihood ratio and signed likelihood ratio test statistics in inflated beta regression models. The adjustments do not require orthogonality between the parameters of interest and the nuisance parameters and are fairly simple since they only require first- and second-order log-likelihood cumulants. Simulation results show that the modified likelihood ratio tests deliver much accurate inference in small samples. An empirical application is presented and discussed.  相似文献   

6.
Effective implementation of likelihood inference in models for high‐dimensional data often requires a simplified treatment of nuisance parameters, with these having to be replaced by handy estimates. In addition, the likelihood function may have been simplified by means of a partial specification of the model, as is the case when composite likelihood is used. In such circumstances tests and confidence regions for the parameter of interest may be constructed using Wald type and score type statistics, defined so as to account for nuisance parameter estimation or partial specification of the likelihood. In this paper a general analytical expression for the required asymptotic covariance matrices is derived, and suggestions for obtaining Monte Carlo approximations are presented. The same matrices are involved in a rescaling adjustment of the log likelihood ratio type statistic that we propose. This adjustment restores the usual chi‐squared asymptotic distribution, which is generally invalid after the simplifications considered. The practical implication is that, for a wide variety of likelihoods and nuisance parameter estimates, confidence regions for the parameters of interest are readily computable from the rescaled log likelihood ratio type statistic as well as from the Wald type and score type statistics. Two examples, a measurement error model with full likelihood and a spatial correlation model with pairwise likelihood, illustrate and compare the procedures. Wald type and score type statistics may give rise to confidence regions with unsatisfactory shape in small and moderate samples. In addition to having satisfactory shape, regions based on the rescaled log likelihood ratio type statistic show empirical coverage in reasonable agreement with nominal confidence levels.  相似文献   

7.
It is assumed that the logs of the time to failure in a life test follow a normal distribution. If the test is terminated after r of a sample of n items fail, the test is said to be censored. If the sample size is small and censoring severe, the usual maximum likelihood estimator of a is downwardly biased. Monte Carlo techniques and regression analysis were used to develop an empirical correction factor. Applying the correction factor to the maximum likelihood estimator yields an unbiased estimate of σ.  相似文献   

8.
This paper is concerned with testing the equality of scale parameters of K(> 2) two-parameter exponential distributions in presence of unspecified location parameters based on complete and type II censored samples. We develop a marginal likelihood ratio statistic, a quadratic statistic (Qu) (Nelson, 1982) based on maximum marginal likelihood estimates of the scale parameters under the null and the alternative hypotheses, a C(a) statistic (CPL) (Neyman, 1959) based on the profile likelihood estimate of the scale parameter under the null hypothesis and an extremal scale parameter ratio statistic (ESP) (McCool, 1979). We show that the marginal likelihood ratio statistic is equivalent to the modified Bartlett test statistic. We use Bartlett's small sample correction to the marginal likelihood ratio statistic and call it the modified marginal likelihood ratio statistic (MLB). We then compare the four statistics, MLBi Qut CPL and ESP in terms of size and power by using Monte Carlo simulation experiments. For the variety of sample sizes and censoring combinations and nominal levels considered the statistic MLB holds nominal level most accurately and based on empirically calculated critical values, this statistic performs best or as good as others in most situations. Two examples are given.  相似文献   

9.
Pairwise likelihood functions are convenient surrogates for the ordinary likelihood, useful when the latter is too difficult or even impractical to compute. One drawback of pairwise likelihood inference is that, for a multidimensional parameter of interest, the pairwise likelihood analogue of the likelihood ratio statistic does not have the standard chi-square asymptotic distribution. Invoking the theory of unbiased estimating functions, this paper proposes and discusses a computationally and theoretically attractive approach based on the derivation of empirical likelihood functions from the pairwise scores. This approach produces alternatives to the pairwise likelihood ratio statistic, which allow reference to the usual asymptotic chi-square distribution and which are useful when the elements of the Godambe information are troublesome to evaluate or in the presence of large data sets with relative small sample sizes. Two Monte Carlo studies are performed in order to assess the finite-sample performance of the proposed empirical pairwise likelihoods.  相似文献   

10.
The empirical likelihood method is proposed to construct the confidence regions for the difference in value between coefficients of two-sample linear regression model. Unlike existing empirical likelihood procedures for one-sample linear regression models, as the empirical likelihood ratio function is not concave, the usual maximum empirical likelihood estimation cannot be obtained directly. To overcome this problem, we propose to incorporate a natural and well-explained restriction into likelihood function and obtain a restricted empirical likelihood ratio statistic (RELR). It is shown that RELR has an asymptotic chi-squared distribution. Furthermore, to improve the coverage accuracy of the confidence regions, a Bartlett correction is applied. The effectiveness of the proposed approach is demonstrated by a simulation study.  相似文献   

11.
In many case-control studies, it is common to utilize paired data when treatments are being evaluated. In this article, we propose and examine an efficient distribution-free test to compare two independent samples, where each is based on paired observations. We extend and modify the density-based empirical likelihood ratio test presented by Gurevich and Vexler [7] to formulate an appropriate parametric likelihood ratio test statistic corresponding to the hypothesis of our interest and then to approximate the test statistic nonparametrically. We conduct an extensive Monte Carlo study to evaluate the proposed test. The results of the performed simulation study demonstrate the robustness of the proposed test with respect to values of test parameters. Furthermore, an extensive power analysis via Monte Carlo simulations confirms that the proposed method outperforms the classical and general procedures in most cases related to a wide class of alternatives. An application to a real paired data study illustrates that the proposed test can be efficiently implemented in practice.  相似文献   

12.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

13.
Testing the equal means hypothesis of a bivariate normal distribution with homoscedastic varlates when the data are incomplete is considered. If the correlational parameter, ρ, is known, the well-known theory of the general linear model is easily employed to construct the likelihood ratio test for the two sided alternative. A statistic, T, for the case of ρ unknown is proposed by direct analogy to the likelihood ratio statistic when ρ is known. The null and nonnull distribution of T is investigated by Monte Carlo techniques. It is concluded that T may be compared to the conventional t distribution for testing the null hypothesis and that this procedure results in a substantial increase in power-efficiency over the procedure based on the paired t test which ignores the incomplete data. A Monte Carlo comparison to two statistics proposed by Lin and Stivers (1974) suggests that the test based on T is more conservative than either of their statistics.  相似文献   

14.
For testing goodness-of-fit in a k cell multinomial distribution having very small frequencies, the usual chi-square approximation to the upper tail of the likelihood ratio statistic, G2 is not satisfactory. A new adjustment to G2 is determined on the basis of analytical investigation in terms of asymptotic bias and variance of the adjusted G2 A Monte Carlo simulation is performed for several one-way tables to assess the adjustment of G2 in order to obtain a closer approximation to the nomial level of significance.  相似文献   

15.
The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.  相似文献   

16.

We present correction formulae to improve likelihood ratio and score teats for testing simple and composite hypotheses on the parameters of the beta distribution. As a special case of our results we obtain improved tests for the hypothesis that a sample is drawn from a uniform distribution on (0, 1). We present some Monte Carlo investigations to show that both corrected tests have better performances than the classical likelihood ratio and score tests at least for small sample sizes.  相似文献   

17.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

18.
Methods for selecting a distributional model for a random variable such as ambient air quality concentration are examined. Specific consideration is given to identification of a model from the exponential, lognormal, Weibull and gamma distributions. The performance of a likelihood ratio statistic and a Kolmogorov ratio statistic are examined by Monte Carlo simulation. On the basis of these results a procedure for increasing the probability of correct selection is proposed.  相似文献   

19.
A semiparametric logistic regression model is proposed in which its nonparametric component is approximated with fixed-knot cubic B-splines. To assess the linearity of the nonparametric component, we construct a penalized likelihood ratio test statistic. When the number of knots is fixed, the null distribution of the test statistic is shown to be asymptotically the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. We set the asymptotic null expectation of this test statistic equal to a value to determine the smoothing parameter value. Monte Carlo experiments are conducted to investigate the performance of the proposed test. Its practical use is illustrated with a real-life example.  相似文献   

20.
This article analyzes the effects of multicollienarity on the maximum likelihood (ML) estimator for the Tobit regression model. Furthermore, a ridge regression (RR) estimator is proposed since the mean squared error (MSE) of ML becomes inflated when the regressors are collinear. To investigate the performance of the traditional ML and the RR approaches we use Monte Carlo simulations where the MSE is used as performance criteria. The simulated results indicate that the RR approach should always be preferred to the ML estimation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号