首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block-wise missing data either focus on the single-block missing pattern or heavily rely on the model structure. In this study, we propose a single regression-based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block-wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method.  相似文献   

2.
This paper presents missing data methods for repeated measures data in small samples. Most methods currently available are for large samples. In particular, no studies have compared the performance of multiple imputation methods to that of non-imputation incomplete analysis methods. We first develop a strategy for multiple imputations for repeated measures data under a cell-means model that is applicable for any multivariate data with small samples. Multiple imputation inference procedures are applied to the resulting multiply imputed complete data sets. Comparisons to other available non-imputation incomplete data methods is made via simulation studies to conclude that there is not much gain in using the computer intensive multiple imputation methods for small sample repeated measures data analysis in terms of the power of testing hypotheses of parameters of interest.  相似文献   

3.
In this article, we compare alternative missing imputation methods in the presence of ordinal data, in the framework of CUB (Combination of Uniform and (shifted) Binomial random variable) models. Various imputation methods are considered, as are univariate and multivariate approaches. The first step consists of running a simulation study designed by varying the parameters of the CUB model, to consider and compare CUB models as well as other methods of missing imputation. We use real datasets on which to base the comparison between our approach and some general methods of missing imputation for various missing data mechanisms.  相似文献   

4.
A meta-analysis of a continuous outcome measure may involve missing standard errors. This is not a problem depending on assumptions made about the population standard deviation. Multiple imputation can be used to impute missing values while allowing for uncertainty in the imputation. Markov chain Monte Carlo simulation is a multiple imputation technique for generating posterior predictive distributions for missing data. We present an example of imputing missing variances using WinBUGS. The example highlights the importance of checking model assumptions, whether for missing or observed data.  相似文献   

5.
Dealing with incomplete data is a pervasive problem in statistical surveys. Bayesian networks have been recently used in missing data imputation. In this research, we propose a new methodology for the multivariate imputation of missing data using discrete Bayesian networks and conditional Gaussian Bayesian networks. Results from imputing missing values in coronary artery disease data set and milk composition data set as well as a simulation study from cancer-neapolitan network are presented to demonstrate and compare the performance of three Bayesian network-based imputation methods with those of multivariate imputation by chained equations (MICE) and the classical hot-deck imputation method. To assess the effect of the structure learning algorithm on the performance of the Bayesian network-based methods, two methods called Peter-Clark algorithm and greedy search-and-score have been applied. Bayesian network-based methods are: first, the method introduced by Di Zio et al. [Bayesian networks for imputation, J. R. Stat. Soc. Ser. A 167 (2004), 309–322] in which, each missing item of a variable is imputed using the information given in the parents of that variable; second, the method of Di Zio et al. [Multivariate techniques for imputation based on Bayesian networks, Neural Netw. World 15 (2005), 303–310] which uses the information in the Markov blanket set of the variable to be imputed and finally, our new proposed method which applies the whole available knowledge of all variables of interest, consisting the Markov blanket and so the parent set, to impute a missing item. Results indicate the high quality of our new proposed method especially in the presence of high missingness percentages and more connected networks. Also the new method have shown to be more efficient than the MICE method for small sample sizes with high missing rates.  相似文献   

6.
We propose a multiple imputation method to deal with incomplete categorical data. This method imputes the missing entries using the principal component method dedicated to categorical data: multiple correspondence analysis (MCA). The uncertainty concerning the parameters of the imputation model is reflected using a non-parametric bootstrap. Multiple imputation using MCA (MIMCA) requires estimating a small number of parameters due to the dimensionality reduction property of MCA. It allows the user to impute a large range of data sets. In particular, a high number of categories per variable, a high number of variables or a small number of individuals are not an issue for MIMCA. Through a simulation study based on real data sets, the method is assessed and compared to the reference methods (multiple imputation using the loglinear model, multiple imputation by logistic regressions) as well to the latest works on the topic (multiple imputation by random forests or by the Dirichlet process mixture of products of multinomial distributions model). The proposed method provides a good point estimate of the parameters of the analysis model considered, such as the coefficients of a main effects logistic regression model, and a reliable estimate of the variability of the estimators. In addition, MIMCA has the great advantage that it is substantially less time consuming on data sets of high dimensions than the other multiple imputation methods.  相似文献   

7.
Missing data often complicate the analysis of scientific data. Multiple imputation is a general purpose technique for analysis of datasets with missing values. The approach is applicable to a variety of missing data patterns but often complicated by some restrictions like the type of variables to be imputed and the mechanism underlying the missing data. In this paper, the authors compare the performance of two multiple imputation methods, namely fully conditional specification and multivariate normal imputation in the presence of ordinal outcomes with monotone missing data patterns. Through a simulation study and an empirical example, the authors show that the two methods are indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the ones presented here.  相似文献   

8.
ABSTRACT

Missing data are commonly encountered in self-reported measurements and questionnaires. It is crucial to treat missing values using appropriate method to avoid bias and reduction of power. Various types of imputation methods exist, but it is not always clear which method is preferred for imputation of data with non-normal variables. In this paper, we compared four imputation methods: mean imputation, quantile imputation, multiple imputation, and quantile regression multiple imputation (QRMI), using both simulated and real data investigating factors affecting self-efficacy in breast cancer survivors. The results displayed an advantage of using multiple imputation, especially QRMI when data are not normal.  相似文献   

9.
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation–Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case–control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered.  相似文献   

10.
Multiple imputation is a common approach for dealing with missing values in statistical databases. The imputer fills in missing values with draws from predictive models estimated from the observed data, resulting in multiple, completed versions of the database. Researchers have developed a variety of default routines to implement multiple imputation; however, there has been limited research comparing the performance of these methods, particularly for categorical data. We use simulation studies to compare repeated sampling properties of three default multiple imputation methods for categorical data, including chained equations using generalized linear models, chained equations using classification and regression trees, and a fully Bayesian joint distribution based on Dirichlet process mixture models. We base the simulations on categorical data from the American Community Survey. In the circumstances of this study, the results suggest that default chained equations approaches based on generalized linear models are dominated by the default regression tree and Bayesian mixture model approaches. They also suggest competing advantages for the regression tree and Bayesian mixture model approaches, making both reasonable default engines for multiple imputation of categorical data. Supplementary material for this article is available online.  相似文献   

11.
In longitudinal studies, nonlinear mixed-effects models have been widely applied to describe the intra- and the inter-subject variations in data. The inter-subject variation usually receives great attention and it may be partially explained by time-dependent covariates. However, some covariates may be measured with substantial errors and may contain missing values. We proposed a multiple imputation method, implemented by a Markov Chain Monte-Carlo method along with Gibbs sampler, to address the covariate measurement errors and missing data in nonlinear mixed-effects models. The multiple imputation method is illustrated in a real data example. Simulation studies show that the multiple imputation method outperforms the commonly used naive methods.  相似文献   

12.
This article is concerned with the effect of the methods for handling missing values in multivariate control charts. We discuss the complete case, mean substitution, regression, stochastic regression, and the expectation–maximization algorithm methods for handling missing values. Estimates of mean vector and variance–covariance matrix from the treated data set are used to build the multivariate exponentially weighted moving average (MEWMA) control chart. Based on a Monte Carlo simulation study, the performance of each of the five methods is investigated in terms of its ability to obtain the nominal in-control and out-of-control average run length (ARL). We consider three sample sizes, five levels of the percentage of missing values, and three types of variable numbers. Our simulation results show that imputation methods produce better performance than case deletion methods. The regression-based imputation methods have the best overall performance among all the competing methods.  相似文献   

13.
Missing data are a prevalent and widespread data analytic issue and previous studies have performed simulations to compare the performance of missing data methods in various contexts and for various models; however, one such context that has yet to receive much attention in the literature is the handling of missing data with small samples, particularly when the missingness is arbitrary. Prior studies have either compared methods for small samples with monotone missingness commonly found in longitudinal studies or have investigated the performance of a single method to handle arbitrary missingness with small samples but studies have yet to compare the relative performance of commonly implemented missing data methods for small samples with arbitrary missingness. This study conducts a simulation study to compare and assess the small sample performance of maximum likelihood, listwise deletion, joint multiple imputation, and fully conditional specification multiple imputation for a single-level regression model with a continuous outcome. Results showed that, provided assumptions are met, joint multiple imputation unanimously performed best of the methods examined in the conditions under study.  相似文献   

14.
Summary.  The paper develops a data augmentation method to estimate the distribution function of a variable, which is partially observed, under a non-ignorable missing data mechanism, and where surrogate data are available. An application to the estimation of hourly pay distributions using UK Labour Force Survey data provides the main motivation. In addition to considering a standard parametric data augmentation method, we consider the use of hot deck imputation methods as part of the data augmentation procedure to improve the robustness of the method. The method proposed is compared with standard methods that are based on an ignorable missing data mechanism, both in a simulation study and in the Labour Force Survey application. The focus is on reducing bias in point estimation, but variance estimation using multiple imputation is also considered briefly.  相似文献   

15.
The multivariate t linear mixed model (MtLMM) has been recently proposed as a robust tool for analysing multivariate longitudinal data with atypical observations. Missing outcomes frequently occur in longitudinal research even in well controlled situations. As a powerful alternative to the traditional expectation maximization based algorithm employing single imputation, we consider a Bayesian analysis of the MtLMM to account for the uncertainties of model parameters and missing outcomes through multiple imputation. An inverse Bayes formulas sampler coupled with Metropolis-within-Gibbs scheme is used to effectively draw the posterior distributions of latent data and model parameters. The techniques for multiple imputation of missing values, estimation of random effects, prediction of future responses, and diagnostics of potential outliers are investigated as well. The proposed methodology is illustrated through a simulation study and an application to AIDS/HIV data.  相似文献   

16.
We have compared the efficacy of five imputation algorithms readily available in SAS for the quadratic discriminant function. Here, we have generated several different parametric-configuration training data with missing data, including monotone missing-at-random observations, and used a Monte Carlo simulation to examine the expected probabilities of misclassification for the two-class quadratic statistical discrimination problem under five different imputation methods. Specifically, we have compared the efficacy of the complete observation-only method and the mean substitution, regression, predictive mean matching, propensity score, and Markov Chain Monte Carlo (MCMC) imputation methods. We found that the MCMC and propensity score multiple imputation approaches are, in general, superior to the other imputation methods for the configurations and training-sample sizes we considered.  相似文献   

17.
Missing covariates data with censored outcomes put a challenge in the analysis of clinical data especially in small sample settings. Multiple imputation (MI) techniques are popularly used to impute missing covariates and the data are then analyzed through methods that can handle censoring. However, techniques based on MI are available to impute censored data also but they are not much in practice. In the present study, we applied a method based on multiple imputation by chained equations to impute missing values of covariates and also to impute censored outcomes using restricted survival time in small sample settings. The complete data were then analyzed using linear regression models. Simulation studies and a real example of CHD data show that the present method produced better estimates and lower standard errors when applied on the data having missing covariate values and censored outcomes than the analysis of the data having censored outcome but excluding cases with missing covariates or the analysis when cases with missing covariate values and censored outcomes were excluded from the data (complete case analysis).  相似文献   

18.
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputation. The HT approach, employing inverse kernel-estimated weights, includes the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals. Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to kernel regression imputation estimator under standard regularity conditions of the regression function and the missing pattern function. A comprehensive simulation study shows that the basic HT estimator is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators can be insensitive to missing data patterns unbalanced with respect to the distribution of the covariate. Empirical studies show that the nearest neighbor imputation method is most effective among these imputation methods for estimating a finite population mean and for classifying the species of the iris flower data.  相似文献   

19.
In a general parametric setup, a multivariate regression model is considered when responses may be missing at random while the explanatory variables and covariates are completely observed. Asymptotic optimality properties of maximum likelihood estimators for such models are linked to the Fisher information matrix for the parameters. It is shown that the information matrix is well defined for the missing-at-random model and that it plays the same role as in the complete-data linear models. Applications of the methodologic developments in hypothesis-testing problems, without any imputation of missing data, are illustrated. Some simulation results comparing the proposed method with Rubin's multiple imputation method are presented.  相似文献   

20.
Missing data methods, maximum likelihood estimation (MLE) and multiple imputation (MI), for longitudinal questionnaire data were investigated via simulation. Predictive mean matching (PMM) was applied at both item and scale levels, logistic regression at item level and multivariate normal imputation at scale level. We investigated a hybrid approach which is combination of MLE and MI, i.e. scales from the imputed data are eliminated if all underlying items were originally missing. Bias and mean square error (MSE) for parameter estimates were examined. ML seemed to provide occasionally the best results in terms of bias, but hardly ever on MSE. All imputation methods at the scale level and logistic regression at item level hardly ever showed the best performance. The hybrid approach is similar or better than its original MI. The PMM-hybrid approach at item level demonstrated the best MSE for most settings and in some cases also the smallest bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号