首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estimation of population parameters of the continuous common factor model from categorical observed variables is meanwhile regularly performed. It is shown that the formula for the calculation of the determinacy of the regression factor score predictor from the estimated model parameters has to be adapted under these conditions. A method for the calculation of this determinacy from the model parameters of the continuous population factor model based on categorical variables is proposed and evaluated by means of simulated population data. It turns out that using the uncorrected formula can lead to serious overestimation of determinacy for categorical variables.  相似文献   

2.
Ridge regression is the alternative method to ordinary least squares, which is mostly applied when a multiple linear regression model presents a worrying degree of collinearity. A relevant topic in ridge regression is the selection of the ridge parameter, and different proposals have been presented in the scientific literature. Since the ridge estimator is biased, its estimation is normally based on the calculation of the mean square error (MSE) without considering (to the best of our knowledge) whether the proposed value for the ridge parameter really mitigates the collinearity. With this goal and different simulations, this paper proposes to estimate the ridge parameter from the determinant of the matrix of correlation of the data, which verifies that the variance inflation factor (VIF) is lower than the traditionally established threshold. The possible relation between the VIF and the determinant of the matrix of correlation is also analysed. Finally, the contribution is illustrated with three real examples.  相似文献   

3.
Principal axis factoring (PAF) and maximum likelihood factor analysis (MLFA) are two of the most popular estimation methods in exploratory factor analysis. It is known that PAF is better able to recover weak factors and that the maximum likelihood estimator is asymptotically efficient. However, there is almost no evidence regarding which method should be preferred for different types of factor patterns and sample sizes. Simulations were conducted to investigate factor recovery by PAF and MLFA for distortions of ideal simple structure and sample sizes between 25 and 5000. Results showed that PAF is preferred for population solutions with few indicators per factor and for overextraction. MLFA outperformed PAF in cases of unequal loadings within factors and for underextraction. It was further shown that PAF and MLFA do not always converge with increasing sample size. The simulation findings were confirmed by an empirical study as well as by a classic plasmode, Thurstone's box problem. The present results are of practical value for factor analysts.  相似文献   

4.
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct.  相似文献   

5.
Least absolute deviation regression is applied using a fixed number of points for all values of the index to estimate the index and scale parameter of the stable distribution using regression methods based on the empirical characteristic function. The recognized fixed number of points estimation procedure uses ten points in the interval zero to one, and least squares estimation. It is shown that using the more robust least absolute regression based on iteratively re-weighted least squares outperforms the least squares procedure with respect to bias and also mean square error in smaller samples.  相似文献   

6.
A simple estimation procedure, based on the generalized least squares method, for the parameters of the Weibull distribution is described and investigated. Through a simulation study, this estimation technique is compared with maximum likelihood estimation, ordinary least squares estimation, and Menon's estimation procedure; this comparison is based on observed relative efficiencies (that is, the ratio of the Cramer-Rao lower bound to the observed mean squared error). Simulation results are presented for samples of size 25. Among the estimators considered in this simulation study, the generalized least squares estimator was found to be the "best" estimator for the shape parameter and a close competitor to the maximum likelihood estimator of the scale parameter.  相似文献   

7.
The impact of errors in the factor levels is examined on the estimation of parameters in second-order response models. Errors can occur in setting the factor levels for response surface and robust parameter design models. These errors can lead to heterogeneity of variances in model errors that make ordinary least squares estimation inappropriate. Weighted least squares and maximum likelihood estimation approaches are developed as viable alternatives where it is assumed the variances and covariances of the errors are known. Performance of these estimation techniques are examined in simulation studies for two examples. Another example is given that applies these results.  相似文献   

8.
In this paper, a penalized weighted composite quantile regression estimation procedure is proposed to estimate unknown regression parameters and autoregression coefficients in the linear regression model with heavy-tailed autoregressive errors. Under some conditions, we show that the proposed estimator possesses the oracle properties. In addition, we introduce an iterative algorithm to achieve the proposed optimization problem, and use a data-driven method to choose the tuning parameters. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows heavy-tailed distributions. Moreover, the proposed estimator works comparably to the least squares based estimator when there are no outliers and the error is normal. Finally, we apply the proposed methodology to analyze the electricity demand dataset.  相似文献   

9.
This paper is concerned with the estimation of the coefficients of simultaneous partially explosive model with polynomial regression components of different degrees in its equations. Since the least squares method breaks down in this case, a three stage estimation procedure is suggested for obtaining CAN estimates of the coefficients.  相似文献   

10.
We present a random coefficient regression model in which a response is linearly related to some explanatory variables with random coefficients following a Dirichlet distribution. These coefficients can be interpreted as weights because they are nonnegative and add up to one. The proposed estimation procedure combines iteratively reweighted least squares and the maximization on an approximated likelihood function. We also present a diagnostic tool based on a residual Q–Q plot and two procedures for estimating individual weights. The model is used to construct an index for measuring the quality of the railroad system in Spain.  相似文献   

11.
Summary Microaggregation by individual ranking is one of themost commonly applied disclosure control techniques for continuous microdata. The paper studies the effect of microaggregation by individual ranking on the least squares estimation of a multiple linear regression model. It is shown that the traditional least squares estimates are asymptotically unbiased. Moreover, the least squares estimates asymptotically have the same variances as the least squares estimates based on the original (non-aggregated) data. Thus, asymptotically, microaggregation by individual ranking does not result in a loss of efficiency in the least squares estimation of a multiple linear regression model. I thank Hans Schneeweiss for very helpful discussions and comments. Financial support from the Deutsche Forschungsgemeinschaft (German Science Foundation) is gratefully acknowledged.  相似文献   

12.
The effect of spatial autocorrelation on inferences made using ordinary least squares estimation is considered. It is found, in some cases, that ordinary least squares estimators provide a reasonable alternative to the estimated generalized least squares estimators recommended in the spatial statistics literature. One of the most serious problems in using ordinary least squares is that the usual variance estimators are severely biased when the errors are correlated. An alternative variance estimator that adjusts for any observed correlation is proposed. The need to take autocorrelation into account in variance estimation negates much of the advantage that ordinary least squares estimation has in terms of computational simplicity  相似文献   

13.
We consider estimation in the single‐index model where the link function is monotone. For this model, a profile least‐squares estimator has been proposed to estimate the unknown link function and index. Although it is natural to propose this procedure, it is still unknown whether it produces index estimates that converge at the parametric rate. We show that this holds if we solve a score equation corresponding to this least‐squares problem. Using a Lagrangian formulation, we show how one can solve this score equation without any reparametrization. This makes it easy to solve the score equations in high dimensions. We also compare our method with the effective dimension reduction and the penalized least‐squares estimator methods, both available on CRAN as R packages, and compare with link‐free methods, where the covariates are elliptically symmetric.  相似文献   

14.
We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is applied to a more general case of non-monotone missing data. The proposed method is asymptotically equivalent to the Fisher scoring method from the observed likelihood, but avoids the burden of computing the first and second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method. A numerical example is presented to illustrate the method.  相似文献   

15.
The present article deals with the problem of estimation of parameters in a linear regression model when some data on response variable is missing and the responses are equi-correlated. The ordinary least squares and optimal homogeneous predictors are employed to find the imputed values of missing observations. Their efficiency properties are analyzed using the small disturbances asymptotic theory. The estimation of regression coefficients using these imputed values is also considered and a comparison of estimators is presented.  相似文献   

16.
Response surfaces express the behavior of responses and can be used for both single and multi-response problems. A common approach to estimate a response surface using experimental results is the ordinary least squares (OLS) method. Since OLS is very sensitive to outliers, some robust approaches have been discussed in the literature. Although there are many methods available in the literature for multiple response optimizations, there are a few studies in model building especially robust models. Assuming correlated responses, in this paper, a robust coefficient estimation method is proposed for multi response problem based on M-estimators. In order to illustrate the performance of the proposed procedure, a contaminated experimental design using a numerical example available in the literature with some modifications is used. Both the classical multivariate least squares method and the proposed robust multivariate approach are used to estimate regression coefficients of multi-response surfaces based on this example. Moreover, a comparison of the proposed robust multi response surface (RMRS) approach with separate robust estimation of single response show that the proposed approach is more efficient.  相似文献   

17.
The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.  相似文献   

18.
This paper proposes a novel estimation of coefficients in single-index regression models. Unlike the traditional average derivative estimation [Powell JL, Stock JH, Stoker TM. Semiparametric estimation of index coefficients. Econometrica. 1989;57(6):1403–1430; Hardle W, Thomas M. Investigating smooth multiple regression by the method of average derivatives. J Amer Statist Assoc. 1989;84(408):986–995] and semiparametric least squares estimation [Ichimura H. Semiparametric least squares (sls) and weighted sls estimation of single-index models. J Econometrics. 1993;58(1):71–120; Hardle W, Hall P, Ichimura H. Optimal smoothing in single-index models. Ann Statist. 1993;21(1):157–178], the procedure developed in this paper is to estimate the coefficients directly by minimizing the mean variation function and does not involve estimating the link function nonparametrically. As a result, it avoids the selection of the bandwidth or the number of knots, and its implementation is more robust and easier. The resultant estimator is shown to be consistent. Numerical results and real data analysis also show that the proposed procedure is more applicable against model free assumptions.  相似文献   

19.
The ridge regression, as a modification of least squares, is one of the ways of the ways of overcoming multicollinearity of regressors in regression analysis. The central problem in the application of the ridge regression is the choice of the perturbation factor k. The paper compares the performance of some subjective (SM) and objective (OM) methods of selection k in respect of the estimates of the mean squared estimation error (MSEE) and the mean squared prediction error (MSPE). The chosen methods were applied on empirical data which relate to social product and some other relevant factors of agriculture of Yugoslavia and its regions.  相似文献   

20.
Generalized least squares estimation of a system of seemingly unrelated regressions is usually a two-stage method: (1) estimation of cross-equation covariance matrix from ordinary least squares residuals for transforming data, and (2) application of least squares on transformed data. In presence of multicollinearity problem, conventionally ridge regression is applied at stage 2. We investigate the usage of ridge residuals at stage 1, and show analytically that the covariance matrix based on the least squares residuals does not always result in more efficient estimator. A simulation study and an application to a system of firms' gross investment support our finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号