首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper deals with the problem of local sensitivity analysis in ordered parameter models. In addition to order restrictions, some constraints imposed on the parameters by the model and/or the data are considered. Measures for assessing how much a change in the data modifies the results and conclusions of a statistical analysis of these models are presented. The sensitivity measures are derived using recent results in mathematical programming. The estimation problem is formulated as a primal nonlinear programming problem, and the sensitivities of the parameter estimates as well as the objective function sensitivities with respect to data are obtained. They are very effective in revealing the influential observations in this type of models and in evaluating the changes due to changes in data values. The methods are illustrated by their application to a wide variety of examples of order-restricted models including ordered exponential family parameters, ordered multinomial parameters, ordered linear model parameters, ordered and data constrained parameters, and ordered functions of parameters.  相似文献   

2.
There are often situations where two or more regression functions are ordered over a range of covariate values. In this paper, we develop efficient constrained estimation and testing procedures for such models. Specifically, necessary and sufficient conditions for ordering generalized linear regressions are given and shown to unify previous results obtained for simple linear regression, for polynomial regression and in the analysis of covariance models. We show that estimating the parameters of ordered linear regressions requires either quadratic programming or semi‐infinite programming, depending on the shape of the covariate space. A distance‐type test for order is proposed. Simulations demonstrate that the proposed methodology improves the mean square error and power compared with the usual, unconstrained, estimation and testing procedures. Improvements are often substantial. The methodology is extended to order generalized linear models where convex semi‐infinite programming plays a role. The methodology is motivated by, and applied to, a hearing loss study.  相似文献   

3.
Changepoint Analysis as a Method for Isotonic Inference   总被引:1,自引:0,他引:1  
Concavity and sigmoidicity hypotheses are developed as a natural extension of the simple ordered hypothesis in normal means. Those hypotheses give reasonable shape constraints for obtaining a smooth response curve in the non-parametric inputoutput analysis. The slope change and inflection point models are introduced correspondingly as the corners of the polyhedral cones defined by those isotonic hypotheses. Then a maximal contrast type test is derived systematically as the likelihood ratio test for each of those changepoint hypotheses. The test is also justified for the original isotonic hypothesis by a complete class lemma. The component variables of the resulting test statistic have second or third order Markov property which, together with an appropriate non-linear transformation, leads to an exact and very efficient algorithm for the probability calculation. Some considerations on the power of the test are given showing this to be a very promising way of approaching to the isotonic inference.  相似文献   

4.
The restrictive properties of compositional data, that is multivariate data with positive parts that carry only relative information in their components, call for special care to be taken while performing standard statistical methods, for example, regression analysis. Among the special methods suitable for handling this problem is the total least squares procedure (TLS, orthogonal regression, regression with errors in variables, calibration problem), performed after an appropriate log-ratio transformation. The difficulty or even impossibility of deeper statistical analysis (confidence regions, hypotheses testing) using the standard TLS techniques can be overcome by calibration solution based on linear regression. This approach can be combined with standard statistical inference, for example, confidence and prediction regions and bounds, hypotheses testing, etc., suitable for interpretation of results. Here, we deal with the simplest TLS problem where we assume a linear relationship between two errorless measurements of the same object (substance, quantity). We propose an iterative algorithm for estimating the calibration line and also give confidence ellipses for the location of unknown errorless results of measurement. Moreover, illustrative examples from the fields of geology, geochemistry and medicine are included. It is shown that the iterative algorithm converges to the same values as those obtained using the standard TLS techniques. Fitted lines and confidence regions are presented for both original and transformed compositional data. The paper contains basic principles of linear models and addresses many related problems.  相似文献   

5.
Bayesian networks are not well-formulated for continuous variables. The majority of recent works dealing with Bayesian inference are restricted only to special types of continuous variables such as the conditional linear Gaussian model for Gaussian variables. In this context, an exact Bayesian inference algorithm for clusters of continuous variables which may be approximated by independent component analysis models is proposed. The complexity in memory space is linear and the overfitting problem is attenuated, while the inference time is still exponential. Experiments for multibiometric score fusion with quality estimates are conducted, and it is observed that the performances are satisfactory compared to some known fusion techniques.  相似文献   

6.
Abstract.  Multivariate failure time data arises when each study subject can potentially ex-perience several types of failures or recurrences of a certain phenomenon, or when failure times are sampled in clusters. We formulate the marginal distributions of such multivariate data with semiparametric accelerated failure time models (i.e. linear regression models for log-transformed failure times with arbitrary error distributions) while leaving the dependence structures for related failure times completely unspecified. We develop rank-based monotone estimating functions for the regression parameters of these marginal models based on right-censored observations. The estimating equations can be easily solved via linear programming. The resultant estimators are consistent and asymptotically normal. The limiting covariance matrices can be readily estimated by a novel resampling approach, which does not involve non-parametric density estimation or evaluation of numerical derivatives. The proposed estimators represent consistent roots to the potentially non-monotone estimating equations based on weighted log-rank statistics. Simulation studies show that the new inference procedures perform well in small samples. Illustrations with real medical data are provided.  相似文献   

7.
In multi-category response models, categories are often ordered. In the case of ordinal response models, the usual likelihood approach becomes unstable with ill-conditioned predictor space or when the number of parameters to be estimated is large relative to the sample size. The likelihood estimates do not exist when the number of observations is less than the number of parameters. The same problem arises if constraint on the order of intercept values is not met during the iterative procedure. Proportional odds models (POMs) are most commonly used for ordinal responses. In this paper, penalized likelihood with quadratic penalty is used to address these issues with a special focus on POMs. To avoid large differences between two parameter values corresponding to the consecutive categories of an ordinal predictor, the differences between the parameters of two adjacent categories should be penalized. The considered penalized-likelihood function penalizes the parameter estimates or differences between the parameter estimates according to the type of predictors. Mean-squared error for parameter estimates, deviance of fitted probabilities and prediction error for ridge regression are compared with usual likelihood estimates in a simulation study and an application.  相似文献   

8.
Estimation of regression parameters in linear survival models is considered in the clustered data setting. One step updates from an initial consistent estimator are proposed. The updates are based on scores that are functions of ranks of the residuals, and that incorporate weight matrices to improve efficiency. Optimal weights are approximated as the solution to a quadratic programming problem, and asymptotic relative efficiencies to various other weights computed. Except under strong dependence, simpler methods are found to be nearly as efficient as the optimal weights. The performance of several practical estimators based on exchangeable and independence working models is explored in simulations.  相似文献   

9.
Many problems in Statistics involve maximizing a multinomial likelihood over a restricted region. In this paper, we consider instead maximizing a weighted multinomial likelihood. We show that a dual problem always exits which is frequently more tractable and that a solution to the dual problem leads directly to a solution of the primal problem. Moreover, the form of the dual problem suggests an iterative algorithm for solving the MLE problem when the constraint region can be written as a finite intersection of cones. We show that this iterative algorithm is guaranteed to converge to the true solution and show that when the cones are isotonic, this algorithm is a version of Dykstra's algorithm (Dykstra, J. Amer. Statist. Assoc. 78 (1983) 837–842) for the special case of least squares projection onto the intersection of isotonic cones. We give several meaningful examples to illustrate our results. In particular, we obtain the nonparametric maximum likelihood estimator of a monotone density function in the presence of selection bias.  相似文献   

10.
Due to rapid data growth, statistical analysis of massive datasets often has to be carried out in a distributed fashion, either because several datasets stored in separate physical locations are all relevant to a given problem, or simply to achieve faster (parallel) computation through a divide-and-conquer scheme. In both cases, the challenge is to obtain valid inference that does not require processing all data at a single central computing node. We show that for a very widely used class of spatial low-rank models, which can be written as a linear combination of spatial basis functions plus a fine-scale-variation component, parallel spatial inference and prediction for massive distributed data can be carried out exactly, meaning that the results are the same as for a traditional, non-distributed analysis. The communication cost of our distributed algorithms does not depend on the number of data points. After extending our results to the spatio-temporal case, we illustrate our methodology by carrying out distributed spatio-temporal particle filtering inference on total precipitable water measured by three different satellite sensor systems.  相似文献   

11.
Let us denote by (n,k,d)-code, a binary linear code with code length nk information symbols and the minimum distance d. It is well known that the problem of obtaining a binary linear code whose code length n is minimum among (n,k,d)-codes for given integers k and d, is equivalent to solve a linear programming whose solutions correspond to a minimum redundancy error-correcting code. In this paper it will be shown that for some given integers d, there exists no solution of the linear programming except a solution which is obtained using a flat in a finite projective geometry.  相似文献   

12.
ABSTRACT

We propose a generalization of the one-dimensional Jeffreys' rule in order to obtain non informative prior distributions for non regular models, taking into account the comments made by Jeffreys in his article of 1946. These non informatives are parameterization invariant and the Bayesian intervals have good behavior in frequentist inference. In some important cases, we can generate non informative distributions for multi-parameter models with non regular parameters. In non regular models, the Bayesian method offers a satisfactory solution to the inference problem and also avoids the problem that the maximum likelihood estimator has with these models. Finally, we obtain non informative distributions in job-search and deterministic frontier production homogenous models.  相似文献   

13.
Constrained optimization is proposed as a practical solution to the problem of estimating a distribution function at each point in a given set from monotone sequences of upper and lower bounds. The proposed solution employs least absolute value estimation and, hence, has a linear programming formulation. The special structure inherent in this formulation is exploited and an efficient computational method is discussed. The procedure is illustrated by two examples.  相似文献   

14.
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset.  相似文献   

15.
For linear models with one discrete factor and additive general regression term the problem of characterizing A-optimal design measures for inference on (i) treatment effects, (ii) the regression parameters and (iii) all parameters will be considered. In any of these problems product designs can be found which are optimal among all designs, and equal weigth 1/J may be given to each of the J levels of the discrete factor. For problem (i) and (ii) the allocation of the continuous factors for the regression term should follow a suitable optimal design for the corresponding pure regression model, whereas for problem (iii) this would not give an A-optimal product design. For this problem an equivalence theorem for A-optimal product designs will be given. An example will illustrate these results. Finally, by analyzing a model with two discrete factors it will be shown that for enlarged models the best product designs may not be A-optimal.  相似文献   

16.
随着大数据和网络的不断发展,网络调查越来越广泛,大部分网络调查样本属于非概率样本,难以采用传统的抽样推断理论进行推断,如何解决网络调查样本的推断问题是大数据背景下网络调查发展的迫切需求。本文首次从建模的角度提出了解决该问题的基本思路:一是入样概率的建模推断,可以考虑构建基于机器学习与变量选择的倾向得分模型来估计入样概率推断总体;二是目标变量的建模推断,可以考虑直接对目标变量建立参数、非参数或半参数超总体模型进行估计;三是入样概率与目标变量的双重建模推断,可以考虑进行倾向得分模型与超总体模型的加权估计与混合推断。最后,以基于广义Boosted模型的入样概率建模推断为例演示了具体解决方法。  相似文献   

17.
We consider local likelihood or local estimating equations, in which a multivariate function () is estimated but a derived function () of () is of interest. In many applications, when most naturally formulated the derived function is a non-linear function of (). In trying to understand whether the derived non-linear function is constant or linear, a problem arises with this approach: when the function is actually constant or linear, the expectation of the function estimate need not be constant or linear, at least to second order. In such circumstances, the simplest standard methods in nonparametric regression for testing whether a function is constant or linear cannot be applied. We develop a simple general solution which is applicable to nonparametric regression, varying-coefficient models, nonparametric generalized linear models, etc. We show that, in local linear kernel regression, inference about the derived function () is facilitated without a loss of power by reparameterization so that () is itself a component of (). Our approach is in contrast with the standard practice of choosing () for convenience and allowing ()> to be a non-linear function of (). The methods are applied to an important data set in nutritional epidemiology.  相似文献   

18.
Failure time data occur in many areas and in various censoring forms and many models have been proposed for their regression analysis such as the proportional hazards model and the proportional odds model. Another choice that has been discussed in the literature is a general class of semiparmetric transformation models, which include the two models above and many others as special cases. In this paper, we consider this class of models when one faces a general type of censored data, case K informatively interval-censored data, for which there does not seem to exist an established inference procedure. For the problem, we present a two-step estimation procedure that is quite flexible and can be easily implemented, and the consistency and asymptotic normality of the proposed estimators of regression parameters are established. In addition, an extensive simulation study is conducted and suggests that the proposed procedure works well for practical situations. An application is also provided.  相似文献   

19.
In this paper, we discuss the inference problem about the Box-Cox transformation model when one faces left-truncated and right-censored data, which often occur in studies, for example, involving the cross-sectional sampling scheme. It is well-known that the Box-Cox transformation model includes many commonly used models as special cases such as the proportional hazards model and the additive hazards model. For inference, a Bayesian estimation approach is proposed and in the method, the piecewise function is used to approximate the baseline hazards function. Also the conditional marginal prior, whose marginal part is free of any constraints, is employed to deal with many computational challenges caused by the constraints on the parameters, and a MCMC sampling procedure is developed. A simulation study is conducted to assess the finite sample performance of the proposed method and indicates that it works well for practical situations. We apply the approach to a set of data arising from a retirement center.  相似文献   

20.
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号