首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Four approximate methods are proposed to construct confidence intervals for the estimation of variance components in unbalanced mixed models. The first three methods are modifications of the Wald, arithmetic and harmonic mean procedures, see Harville and Fenech (1985), while the fourth is an adaptive approach, combining the arithmetic and harmonic mean procedures. The performances of the proposed methods were assessed by a Monte Carlo simulation study. It was found that the intervals based on Wald's method maintained the nominal confidence levels across all designs and values of the parameters under study. On the other hand, the arithmetic (harmonic) mean method performed well for small (large) values of the variance component, relative to the error variance component. The adaptive procedure performed rather well except for extremely unbalanced designs. Further, compared with equal tails intervals, the intervals which use special tables, e.g., Table 678 of Tate and Klett (1959), provided adequate coverage while having much shorter lengths and are thus recommended for use in practice.  相似文献   

2.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

3.
Abstract.  The paper develops empirical Bayes (EB) confidence intervals for population means with distributions belonging to the natural exponential family-quadratic variance function (NEF-QVF) family when the sample size for a particular population is moderate or large. The basis for such development is to find an interval centred around the posterior mean which meets the target coverage probability asymptotically, and then show that the difference between the coverage probabilities of the Bayes and EB intervals is negligible up to a certain order. The approach taken is Edgeworth expansion so that the sample sizes from the different populations need not be significantly large. The proposed intervals meet the target coverage probabilities asymptotically, and are easy to construct. We illustrate use of these intervals in the context of small area estimation both through real and simulated data. The proposed intervals are different from the bootstrap intervals. The latter can be applied quite generally, but the order of accuracy of these intervals in meeting the desired coverage probability is unknown.  相似文献   

4.
We study confidence intervals of prescribed width for the lo-cation parameter of an exponential distribution. Asymptotic expan-sions up to terms tending to zero are obtained for the coverage probability and expected sample size. The limiting distribution of the sample size is given from which an asymptotic expression for the variance of the sample size is deduced. Sequential procedures with non-asymptotic coverage probability are also investigated  相似文献   

5.
The problem of constructing confidence intervals to estimate the mean in a two-stage nested model is considered. Several approximate intervals, which are based on both linear and nonlinear estimators of the mean are investigated. In particular, the method of bootstrap is used to correct the bias in the ‘usual’ variance of the nonlinear estimators. It is found that the intervals based on the nonlinear estimators did not achieve the nominal confidence coefficient for designs involving a small number of groups. Further, it turns out that the intervals are generally conservative, especially at small values of the intraclass correlation coefficient, and that the intervals based on the nonlinear estimators are more conservative than those based on the linear estimators. Compared with the others, the intervals based on the unweighted mean of the group means performed well in terms of coverage and length. For small values of the intraclass correlation coefficient, the ANOVA estimators of the variance components are recommended, otherwise the unweighted means estimator of the between groups variance component should be used. If one is fortunate enough to have control over the design, he is advised to increase the number of groups, as opposed to increasing group sizes, while avoiding groups of size one or two.  相似文献   

6.
ABSTRACT

The performances of six confidence intervals for estimating the arithmetic mean of a lognormal distribution are compared using simulated data. The first interval considered is based on an exact method and is recommended in U.S. EPA guidance documents for calculating upper confidence limits for contamination data. Two intervals are based on asymptotic properties due to the Central Limit Theorem, and the other three are based on transformations and maximum likelihood estimation. The effects of departures from lognormality on the performance of these intervals are also investigated. The gamma distribution is considered to represent departures from the lognormal distribution. The average width and coverage of each confidence interval is reported for varying mean, variance, and sample size. In the lognormal case, the exact interval gives good coverage, but for small sample sizes and large variances the confidence intervals are too wide. In these cases, an approximation that incorporates sampling variability of the sample variance tends to perform better. When the underlying distribution is a gamma distribution, the intervals based upon the Central Limit Theorem tend to perform better than those based upon lognormal assumptions.  相似文献   

7.
Rank regression procedures have been proposed and studied for numerous research applications that do not satisfy the underlying assumptions of the more common linear regression models. This article develops confidence regions for the slope parameter of rank regression using an empirical likelihood (EL) ratio method. It has the advantage of not requiring variance estimation which is required for the normal approximation method. The EL method is also range respecting and results in asymmetric confidence intervals. Simulation studies are used to compare and evaluate normal approximation versus EL inference methods for various conditions such as different sample size or error distribution. The simulation study demonstrates our proposed EL method almost outperforms the traditional method in terms of coverage probability, lower-tail side error, and upper-tail side error. An application of stability analysis also shows the EL method results in shorter confidence intervals for real life data.  相似文献   

8.
Confidence interval is a basic type of interval estimation in statistics. When dealing with samples from a normal population with the unknown mean and the variance, the traditional method to construct t-based confidence intervals for the mean parameter is to treat the n sampled units as n groups and build the intervals. Here we propose a generalized method. We first divide them into several equal-sized groups and then calculate the confidence intervals with the mean values of these groups. If we define “better” in terms of the expected length of the confidence interval, then the first method is better because the expected length of the confidence interval obtained from the first method is shorter. We prove this intuition theoretically. We also specify when the elements in each group are correlated, the first method is invalid, while the second can give us correct results in terms of the coverage probability. We illustrate this with analytical expressions. In practice, when the data set is extremely large and distributed in several data centers, the second method is a good tool to get confidence intervals, in both independent and correlated cases. Some simulations and real data analyses are presented to verify our theoretical results.  相似文献   

9.
Construction of closed-form confidence intervals on linear combinations of variance components were developed generically for balanced data and studied mainly for one-way and two-way random effects analysis of variance models. The Satterthwaite approach is easily generalized to unbalanced data and modified to increase its coverage probability. They are applied on measures of assay precision in combination with (restricted) maximum likelihood and Henderson III Type 1 and 3 estimation. Simulations of interlaboratory studies with unbalanced data and with small sample sizes do not show superiority of any of the possible combinations of estimation methods and Satterthwaite approaches on three measures of assay precision. However, the modified Satterthwaite approach with Henderson III Type 3 estimation is often preferred above the other combinations.  相似文献   

10.
For constructing simultaneous confidence intervals for ratios of means for lognormal distributions, two approaches using a two-step method of variance estimates recovery are proposed. The first approach proposes fiducial generalized confidence intervals (FGCIs) in the first step followed by the method of variance estimates recovery (MOVER) in the second step (FGCIs–MOVER). The second approach uses MOVER in the first and second steps (MOVER–MOVER). Performance of proposed approaches is compared with simultaneous fiducial generalized confidence intervals (SFGCIs). Monte Carlo simulation is used to evaluate the performance of these approaches in terms of coverage probability, average interval width, and time consumption.  相似文献   

11.
In discrete event simulation, the method of control variates is often used to reduce the variance of estimation for the mean of the output response. In the present paper, it is shown that when three or more control variates are used, the usual linear regression estimator of the mean response is one of a large class of unbiased estimators, many of which have smaller variance than the usual estimator. In simulation studies using control variates, a confidence interval for the mean response is typically reported as well. Intervals with shorter width have been proposed using control variates in the literature. The present paper however develops confidence intervals which not only have shorter width but also have higher coverage probability than the usual confidence interval  相似文献   

12.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

13.
Methods for constructing confidence intervals for variance component ratios in general unbalanced mixed models are developed. The methods are based on inverting the distribution of the signed root of the log-likelihood ratio statistic constructed from either the restricted maximum likelihood or the full likelihood. As this distribution is intractable, the inversion is rather based on using a saddlepoint approximation to its distribution. Apart from Wald's exact method, the resulting intervals are unrivalled in terms of achieving accuracy in overall coverage, underage, and overage. Issues related to the proper “reference set” with which to judge the coverage as well as issues connected to variance ratios being nonnegative with lower bound 0 are addressed. Applications include an unbalanced nested design and an unbalanced crossed design.  相似文献   

14.
In this paper, we consider three distribution-free confidence intervals for quantiles given joint records from two independent sequences of continuous random variables with a common continuous distribution function. The coverage probabilities of these intervals are compared. We then compute the universal bounds of the expected widths of the proposed confidence intervals. These results naturally extend to any number of independent sequences instead of just two. Finally, the proposed confidence intervals are applied for a real data set to illustrate the practical usefulness of the procedures developed here.  相似文献   

15.
The major problem of mean–variance portfolio optimization is parameter uncertainty. Many methods have been proposed to tackle this problem, including shrinkage methods, resampling techniques, and imposing constraints on the portfolio weights, etc. This paper suggests a new estimation method for mean–variance portfolio weights based on the concept of generalized pivotal quantity (GPQ) in the case when asset returns are multivariate normally distributed and serially independent. Both point and interval estimations of the portfolio weights are considered. Comparing with Markowitz's mean–variance model, resampling and shrinkage methods, we find that the proposed GPQ method typically yields the smallest mean-squared error for the point estimate of the portfolio weights and obtains a satisfactory coverage rate for their simultaneous confidence intervals. Finally, we apply the proposed methodology to address a portfolio rebalancing problem.  相似文献   

16.
17.
The primary goal of this paper is to examine the small sample coverage probability and size of jackknife confidence intervals centered at a Stein-rule estimator. A Monte Carlo experiment is used to explore the coverage probabilities and lengths of nominal 90% and 95% delete-one and infinitesimal jackknife confidence intervals centered at the Stein-rule estimator; these are compared to those obtained using a bootstrap procedure.  相似文献   

18.
The problem of finding confidence intervals for the success parameter of a binomial experiment has a long history, and a myriad of procedures have been developed. Most exploit the duality between hypothesis testing and confidence regions and are typically based on large sample approximations. We instead employ a direct approach that attempts to determine the optimal coverage probability function a binomial confidence procedure can have from the exact underlying binomial distributions, which in turn defines the associated procedure. We show that a graphical perspective provides much insight into the problem. Both procedures whose coverage never falls below the declared confidence level and those that achieve that level only approximately are analyzed. We introduce the Length/Coverage Optimal method, a variant of Sterne's procedure that minimizes average length while maximizing coverage among all length minimizing procedures, and show that it is superior in important ways to existing procedures.  相似文献   

19.
In the small area estimation, the empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized to be useful because it gives a stable and reliable estimate for a mean of a small area. In practical situations where EBLUP is applied to real data, it is important to evaluate how much EBLUP is reliable. One method for the purpose is to construct a confidence interval based on EBLUP. In this paper, we obtain an asymptotically corrected empirical Bayes confidence interval in a nested error regression model with unbalanced sample sizes and unknown components of variance. The coverage probability is shown to satisfy the confidence level in the second-order asymptotics. It is numerically revealed that the corrected confidence interval is superior to the conventional confidence interval based on the sample mean in terms of the coverage probability and the expected width of the interval. Finally, it is applied to the posted land price data in Tokyo and the neighboring prefecture.  相似文献   

20.
Highly skewed and non-negative data can often be modeled by the delta-lognormal distribution in fisheries research. However, the coverage probabilities of extant interval estimation procedures are less satisfactory in small sample sizes and highly skewed data. We propose a heuristic method of estimating confidence intervals for the mean of the delta-lognormal distribution. This heuristic method is an estimation based on asymptotic generalized pivotal quantity to construct generalized confidence interval for the mean of the delta-lognormal distribution. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities, expected interval lengths and reasonable relative biases. Finally, the proposed method is employed in red cod densities data for a demonstration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号