首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of a new clinical trial may be increased by incorporating historical data of previous trials. In the particular case where only data from a single historical trial are available, there exists no clear recommendation in the literature regarding the most favorable approach. A main problem of the incorporation of historical data is the possible inflation of the type I error rate. A way to control this type of error is the so‐called power prior approach. This Bayesian method does not “borrow” the full historical information but uses a parameter 0 ≤ δ ≤ 1 to determine the amount of borrowed data. Based on the methodology of the power prior, we propose a frequentist framework that allows incorporation of historical data from both arms of two‐armed trials with binary outcome, while simultaneously controlling the type I error rate. It is shown that for any specific trial scenario a value δ > 0 can be determined such that the type I error rate falls below the prespecified significance level. The magnitude of this value of δ depends on the characteristics of the data observed in the historical trial. Conditionally on these characteristics, an increase in power as compared to a trial without borrowing may result. Similarly, we propose methods how the required sample size can be reduced. The results are discussed and compared to those obtained in a Bayesian framework. Application is illustrated by a clinical trial example.  相似文献   

2.
ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are unsustainable. These trends have enormous impact on what treatments get to patients, when they get them and how they are used. The statistical framework for supporting decisions in regulated clinical development of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what constitutes a “successful” trial. Many drugs fail in clinical development, adding to the cost of new medicines, and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development process for its probability-based inference. We argue for a Bayesian approach that employs data from other trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute probability statements that are valuable for understanding the magnitude of treatment effect. Such a Bayesian paradigm provides a promising framework for improving statistical inference and regulatory decision making.  相似文献   

3.
The aim of a phase II clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase II trial, although we assume that subsequent phase III clinical trials will have standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi‐drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright © 2005 John Wiley & Sons, Ltd  相似文献   

4.
The Simon's two‐stage design is the most commonly applied among multi‐stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre‐trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two‐stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B‐splines. The motivating example is the planning of the phase IIA two‐stage trial on anti‐HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.  相似文献   

5.
Children represent a large underserved population of “therapeutic orphans,” as an estimated 80% of children are treated off‐label. However, pediatric drug development often faces substantial challenges, including economic, logistical, technical, and ethical barriers, among others. Among many efforts trying to remove these barriers, increased recent attention has been paid to extrapolation; that is, the leveraging of available data from adults or older age groups to draw conclusions for the pediatric population. The Bayesian statistical paradigm is natural in this setting, as it permits the combining (or “borrowing”) of information across disparate sources, such as the adult and pediatric data. In this paper, authored by the pediatric subteam of the Drug Information Association Bayesian Scientific Working Group and Adaptive Design Working Group, we develop, illustrate, and provide suggestions on Bayesian statistical methods that could be used to design improved pediatric development programs that use all available information in the most efficient manner. A variety of relevant Bayesian approaches are described, several of which are illustrated through 2 case studies: extrapolating adult efficacy data to expand the labeling for Remicade to include pediatric ulcerative colitis and extrapolating adult exposure‐response information for antiepileptic drugs to pediatrics.  相似文献   

6.
Traditionally, noninferiority hypotheses have been tested using a frequentist method with a fixed margin. Given that information for the control group is often available from previous studies, it is interesting to consider a Bayesian approach in which information is “borrowed” for the control group to improve efficiency. However, construction of an appropriate informative prior can be challenging. In this paper, we consider a hybrid Bayesian approach for testing noninferiority hypotheses in studies with a binary endpoint. To account for heterogeneity between the historical information and the current trial for the control group, a dynamic P value–based power prior parameter is proposed to adjust the amount of information borrowed from the historical data. This approach extends the simple test‐then‐pool method to allow a continuous discounting power parameter. An adjusted α level is also proposed to better control the type I error. Simulations are conducted to investigate the performance of the proposed method and to make comparisons with other methods including test‐then‐pool and hierarchical modeling. The methods are illustrated with data from vaccine clinical trials.  相似文献   

7.
This paper illustrates an approach to setting the decision framework for a study in early clinical drug development. It shows how the criteria for a go and a stop decision are calculated based on pre‐specified target and lower reference values. The framework can lead to a three‐outcome approach by including a consider zone; this could enable smaller studies to be performed in early development, with other information either external to or within the study used to reach a go or stop decision. In this way, Phase I/II trials can be geared towards providing actionable decision‐making rather than the traditional focus on statistical significance. The example provided illustrates how the decision criteria were calculated for a Phase II study, including an interim analysis, and how the operating characteristics were assessed to ensure the decision criteria were robust. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

9.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

10.
Bayesian methods are increasingly used in proof‐of‐concept studies. An important benefit of these methods is the potential to use informative priors, thereby reducing sample size. This is particularly relevant for treatment arms where there is a substantial amount of historical information such as placebo and active comparators. One issue with using an informative prior is the possibility of a mismatch between the informative prior and the observed data, referred to as prior‐data conflict. We focus on two methods for dealing with this: a testing approach and a mixture prior approach. The testing approach assesses prior‐data conflict by comparing the observed data to the prior predictive distribution and resorting to a non‐informative prior if prior‐data conflict is declared. The mixture prior approach uses a prior with a precise and diffuse component. We assess these approaches for the normal case via simulation and show they have some attractive features as compared with the standard one‐component informative prior. For example, when the discrepancy between the prior and the data is sufficiently marked, and intuitively, one feels less certain about the results, both the testing and mixture approaches typically yield wider posterior‐credible intervals than when there is no discrepancy. In contrast, when there is no discrepancy, the results of these approaches are typically similar to the standard approach. Whilst for any specific study, the operating characteristics of any selected approach should be assessed and agreed at the design stage; we believe these two approaches are each worthy of consideration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Empirical Bayes is a versatile approach to “learn from a lot” in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well‐known model‐based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss “formal” empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross‐validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed “co‐data”. In particular, we present two novel examples that allow for co‐data: first, a Bayesian spike‐and‐slab setting that facilitates inclusion of multiple co‐data sources and types and, second, a hybrid empirical Bayes–full Bayes ridge regression approach for estimation of the posterior predictive interval.  相似文献   

12.
When making decisions regarding the investment and design for a Phase 3 programme in the development of a new drug, the results from preceding Phase 2 trials are an important source of information. However, only projects in which the Phase 2 results show promising treatment effects will typically be considered for a Phase 3 investment decision. This implies that, for those projects where Phase 3 is pursued, the underlying Phase 2 estimates are subject to selection bias. We will in this article investigate the nature of this selection bias based on a selection of distributions for the treatment effect. We illustrate some properties of Bayesian estimates, providing shrinkage of the Phase 2 estimate to counteract the selection bias. We further give some empirical guidance regarding the choice of prior distribution and comment on the consequences for decision-making in investment and planning for Phase 3 programmes.  相似文献   

13.
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u‐shape very similar, but not equal, to a β‐distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Incorporating historical data has a great potential to improve the efficiency of phase I clinical trials and to accelerate drug development. For model-based designs, such as the continuous reassessment method (CRM), this can be conveniently carried out by specifying a “skeleton,” that is, the prior estimate of dose limiting toxicity (DLT) probability at each dose. In contrast, little work has been done to incorporate historical data into model-assisted designs, such as the Bayesian optimal interval (BOIN), Keyboard, and modified toxicity probability interval (mTPI) designs. This has led to the misconception that model-assisted designs cannot incorporate prior information. In this paper, we propose a unified framework that allows for incorporating historical data into model-assisted designs. The proposed approach uses the well-established “skeleton” approach, combined with the concept of prior effective sample size, thus it is easy to understand and use. More importantly, our approach maintains the hallmark of model-assisted designs: simplicity—the dose escalation/de-escalation rule can be tabulated prior to the trial conduct. Extensive simulation studies show that the proposed method can effectively incorporate prior information to improve the operating characteristics of model-assisted designs, similarly to model-based designs.  相似文献   

15.
As described in the ICH E5 guidelines, a bridging study is an additional study executed in a new geographical region or subpopulation to link or “build a bridge” from global clinical trial outcomes to the new region. The regulatory and scientific goals of a bridging study is to evaluate potential subpopulation differences while minimizing duplication of studies and meeting unmet medical needs expeditiously. Use of historical data (borrowing) from global studies is an attractive approach to meet these conflicting goals. Here, we propose a practical and relevant approach to guide the optimal borrowing rate (percent of subjects in earlier studies) and the number of subjects in the new regional bridging study. We address the limitations in global/regional exchangeability through use of a Bayesian power prior method and then optimize bridging study design with a return on investment viewpoint. The method is demonstrated using clinical data from global and Japanese trials in dapagliflozin for type 2 diabetes.  相似文献   

16.
The Dirichlet process can be regarded as a random probability measure for which the authors examine various sum representations. They consider in particular the gamma process construction of Ferguson (1973) and the “stick‐breaking” construction of Sethuraman (1994). They propose a Dirichlet finite sum representation that strongly approximates the Dirichlet process. They assess the accuracy of this approximation and characterize the posterior that this new prior leads to in the context of Bayesian nonpara‐metric hierarchical models.  相似文献   

17.
The conventional phase II trial design paradigm is to make the go/no-go decision based on the hypothesis testing framework. Statistical significance itself alone, however, may not be sufficient to establish that the drug is clinically effective enough to warrant confirmatory phase III trials. We propose the Bayesian optimal phase II trial design with dual-criterion decision making (BOP2-DC), which incorporates both statistical significance and clinical relevance into decision making. Based on the posterior probability that the treatment effect reaches the lower reference value (statistical significance) and the clinically meaningful value (clinical significance), BOP2-DC allows for go/consider/no-go decisions, rather than a binary go/no-go decision. BOP2-DC is highly flexible and accommodates various types of endpoints, including binary, continuous, time-to-event, multiple, and coprimary endpoints, in single-arm and randomized trials. The decision rule of BOP2-DC is optimized to maximize the probability of a go decision when the treatment is effective or minimize the expected sample size when the treatment is futile. Simulation studies show that the BOP2-DC design yields desirable operating characteristics. The software to implement BOP2-DC is freely available at www.trialdesign.org .  相似文献   

18.
Model‐informed drug discovery and development offers the promise of more efficient clinical development, with increased productivity and reduced cost through scientific decision making and risk management. Go/no‐go development decisions in the pharmaceutical industry are often driven by effect size estimates, with the goal of meeting commercially generated target profiles. Sufficient efficacy is critical for eventual success, but the decision to advance development phase is also dependent on adequate knowledge of appropriate dose and dose‐response. Doses which are too high or low pose risk of clinical or commercial failure. This paper addresses this issue and continues the evolution of formal decision frameworks in drug development. Here, we consider the integration of both efficacy and dose‐response estimation accuracy into the go/no‐go decision process, using a model‐based approach. Using prespecified target and lower reference values associated with both efficacy and dose accuracy, we build a decision framework to more completely characterize development risk. Given the limited knowledge of dose response in early development, our approach incorporates a set of dose‐response models and uses model averaging. The approach and its operating characteristics are illustrated through simulation. Finally, we demonstrate the decision approach on a post hoc analysis of the phase 2 data for naloxegol (a drug approved for opioid‐induced constipation).  相似文献   

19.
A Bayesian reference analysis for determining the posterior distribution of the strength of a radiation source is performed. The only pieces of information available are the numbers of counts gathered in a gross and a background measurement along with the respective counting times and a state-of-knowledge distribution for the efficiency. This situation is addressed by combining the calculations of a “one-at-a-time” reference prior and a reference prior with partial information. The posterior distribution of the source strength obtained with the reference prior leads to credible intervals that have better frequentist coverage than corresponding intervals founded on uniform or Jeffreys’ priors.  相似文献   

20.
In the absence of placebo‐controlled trials, the efficacy of a test treatment can be alternatively examined by showing its non‐inferiority to an active control; that is, the test treatment is not worse than the active control by a pre‐specified margin. The margin is based on the effect of the active control over placebo in historical studies. In other words, the non‐inferiority setup involves a network of direct and indirect comparisons between test treatment, active controls, and placebo. Given this framework, we consider a Bayesian network meta‐analysis that models the uncertainty and heterogeneity of the historical trials into the non‐inferiority trial in a data‐driven manner through the use of the Dirichlet process and power priors. Depending on whether placebo was present in the historical trials, two cases of non‐inferiority testing are discussed that are analogs of the synthesis and fixed‐margin approach. In each of these cases, the model provides a more reliable estimate of the control given its effect in other trials in the network, and, in the case where placebo was only present in the historical trials, the model can predict the effect of the test treatment over placebo as if placebo had been present in the non‐inferiority trial. It can further answer other questions of interest, such as comparative effectiveness of the test treatment among its comparators. More importantly, the model provides an opportunity for disproportionate randomization or the use of small sample sizes by allowing borrowing of information from a network of trials to draw explicit conclusions on non‐inferiority. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号