首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Risk assessment methodologies for passive smoking-induced lung cancer   总被引:1,自引:0,他引:1  
Risk assessment methodologies have been successfully applied to control societal risk from outdoor air pollutants. They are now being applied to indoor air pollutants such as environmental tobacco smoke (ETS) and radon. Nonsmokers' exposures to ETS have been assessed based on dosimetry of nicotine, its metabolite, continine, and on exposure to the particulate phase of ETS. Lung cancer responses have been based on both the epidemiology of active and of passive smoking. Nine risk assessments of nonsmokers' lung cancer risk from exposure to ETS have been performed. Some have estimated risks for lifelong nonsmokers only; others have included ex-smokers; still others have estimated total deaths from all causes. To facilitate interstudy comparison, in some cases lung cancers had to be interpolated from a total, or the authors' original estimate had to be adjusted to include ex-smokers. Further, all estimates were adjusted to 1988. Excluding one study whose estimate differs from the mean of the others by two orders of magnitude, the remaining risk assessments are in remarkable agreement. The mean estimate is approximately 5000 +/- 2400 nonsmokers' lung cancer deaths (LCDSs) per year. This is a 25% greater risk to nonsmokers than is indoor radon, and is about 57 times greater than the combined estimated cancer risk from all the hazardous outdoor air pollutants currently regulated by the Environmental Protection Agency: airborne radionuclides, asbestos, arsenic, benzene, coke oven emissions, and vinyl chloride.  相似文献   

2.
Several epidemiological studies have found a weak, but consistent association between lung cancer in nonsmokers and exposure to environmental tobacco smoke (ETS). In addition, a purported link between such exposure and coronary heart disease (CHD) has been of major concern. Although it is biologically plausible that ETS has a contributory role in the induction of lung cancer in nonsmoking individuals, dose-response extrapolation-supported by the more solid database for active smokers-gives an additional risk for lung cancer risk that is more than one order of magnitude lower than that indicated by major positive epidemiological studies. The discrepancy between available epidemiological data and dosimetric estimates seems, to a major part, to reflect certain systematic biases in the former that are difficult to control by statistical analysis when dealing with risks of such low magnitudes. These include, most importantly, misclassification of smoking status, followed by inappropriate selection of controls, as well as certain confounding factors mainly related to lifestyle, and possibly also hereditary disposition. A significant part of an association between lung cancer and exposure to ETS would disappear, if, on the average, 1 patient out of 20 nonsmoking cases had failed to tell the interviewer that he had, in fact, recently stopped smoking. In the large International Agency for Research on Cancer (IARC) multicenter study even lower misclassification rates would abolish the weak, statistically nonsignificant associations that were found. In the former study an apparent significant protective effect from exposure to ETS in childhood with respect to lung cancer later in life was reported, a most surprising finding. The fact that the mutation spectrum of the p53 tumor suppressor gene in lung tumors of ETS-exposed nonsmokers generally differs from that found in tumors of active smokers lends additional support to the notion that the majority of tumors found in ETS-exposed nonsmokers have nothing to do with tobacco smoke. The one-sided preoccupation with ETS as a causative factor of lung cancer in nonsmokers may seriously hinder the elucidation of the multifactorial etiology of these tumors. Due to the high prevalence of cardiovascular disease in the population, even a modest causal association with ETS would, if valid, constitute a serious public health problem. By pooling data from 20 published studies on ETS and heart disease, some of which reported higher risks than is known to be caused by active smoking, a statistically significant association with spousal smoking is obtained. However, in most of these studies, many of the most common confounding risk factors were ignored and there appears to be insufficient evidence to support an association between exposure to ETS and CHD. Further, it seems highly improbable that exposure to a concentration of tobacco smoke at a level that is generally much less than 1% of that inhaled by a smoker could result in an excess risk for CHD that-as has been claimed-is some 30% to 50% of that found in active smokers. There are certainly valid reasons to limit exposure to ETS as well as to other air pollutants in places such as offices and homes in order to improve indoor air quality. This goal can be achieved, however, without the introduction of an extremist legislation based on a negligible risk of lung cancer as well as an unsupported and highly hypothetical risk for CHD.  相似文献   

3.
Environmental tobacco smoke (ETS)has recently been determined by U.S. environmental and occupational health authorities to be a human carcinogen. We develop a model which permits using atmospheric nicotine measurements to estimate nonsmokers’ETS lung cancer risks in individual workplaces for the first time. We estimate that during the 1980s, the U.S. nonsmoking adult population's median nicotine lung exposure (homes and workplaces combined)was 143 micrograms (μg)of nicotine daily, and that most-exposed adult nonsmokers inhaled 1430 μg/day. These exposure estimates are validated by pharmacokinetic modeling which yields the corresponding steady-state dose of the nicotine metabolite, cotinine. For U.S. adult nonsmokers of working age, we estimate median cotinine values of about 1.0 nanogram per milliliter (ng/ml)in plasma, and 6.2 ng/ml in urine; for most-exposed nonsmokers, we estimate cotinine concentrations of about 10 ng/ml in plasma and 62 ng/ml in urine. These values are consistent to within 15% of the cotinine values observed in contemporaneous clinical epidemiological studies. Corresponding median risk from ETS exposure in U.S. nonsmokers during the 1980s is estimated at about two lung cancer deaths (LCDs)per 1000 at risk, and for most-exposed nonsmokers, about two LCDs per 100. Risks abroad appear similar. Modeling of the lung cancer mortality risk from passive smoking suggests that de minimis [i.e., “acceptable” (10-6)], risk occurs at an 8-hr time-weighted-average exposure concentration of 7.5 nanograms of ETS nicotine per cubic meter of workplace air for a working lifetime of 40 years. This model is based upon a linear exposure-response relationship validated by physical, clinical, and epidemiological data. From available data, it appears that workplaces without effective smoking policies considerably exceed this de minimis risk standard. For a substantial fraction of the 59 million nonsmoking workers in the U.S., current workplace exposure to ETS also appears to pose risks exceeding the de manifestos risk level above which carcinogens are strictly regulated by the federal government.  相似文献   

4.
The presence of environmental tobacco smoke (ETS) in homes has been implicated in the causation of lung cancer. While of interest in its own right, ETS also influences the risk imposed by radon and its decay products. The interaction between radon progeny and ETS alters the exposure, intake, uptake, biokinetics, dosimetry, and radiobiology of those progeny. The present paper details model predictions of the various influences of ETS on these factors in the U.S. population and provides estimates of the resulting change in the risk from average levels of radon progeny. It is predicted that the presence of ETS produces a very small (perhaps unmeasurable) increase in the risk of radiation-induced tracheobronchial cancer in homes with initially very high particle concentrations for both active and never-smokers, but significantly lowers the risk in homes with initially lower particle concentrations for both groups when generation 4 of the lung is considered the target site. For generation 16, the presence of ETS generally increases the radon-induced risk of lung cancer, although the increase should be unmeasurable at high initial particle concentrations. The net effect of ETS on human health is suggested to be a complicated function of the initial housing conditions, the concentration of particles introduced by smoking, the target generation considered, and the smoking status of exposed populations. This situation precludes any simple statements concerning the role of ETS in governing the incidence of lung cancer in a population.  相似文献   

5.
Annual concentrations of toxic air contaminants are of primary concern from the perspective of chronic human exposure assessment and risk analysis. Despite recent advances in air quality monitoring technology, resource and technical constraints often impose limitations on the availability of a sufficient number of ambient concentration measurements for performing environmental risk analysis. Therefore, sample size limitations, representativeness of data, and uncertainties in the estimated annual mean concentration must be examined before performing quantitative risk analysis. In this paper, we discuss several factors that need to be considered in designing field-sampling programs for toxic air contaminants and in verifying compliance with environmental regulations. Specifically, we examine the behavior of SO2, TSP, and CO data as surrogates for toxic air contaminants and as examples of point source, area source, and line source-dominated pollutants, respectively, from the standpoint of sampling design. We demonstrate the use of bootstrap resampling method and normal theory in estimating the annual mean concentration and its 95% confidence bounds from limited sampling data, and illustrate the application of operating characteristic (OC) curves to determine optimum sample size and other sampling strategies. We also outline a statistical procedure, based on a one-sided t-test, that utilizes the sampled concentration data for evaluating whether a sampling site is compliance with relevant ambient guideline concentrations for toxic air contaminants.  相似文献   

6.
We model nicotine from environmental tobacco smoke (ETS) in office air and salivary cotinine in nonsmoking U.S. workers. We estimate that: an average salivary cotinine level of 0.4 ng/ml corresponds to an increased lifetime mortality risk of 1/1000 for lung cancer, and 1/100 for heart disease; >95% of ETS-exposed office workers exceed OSHA's significant risk level for heart disease mortality, and 60% exceed significant risk for lung cancer mortality; 4000 heart disease deaths and 400 lung cancer deaths occur annually among office workers from passive smoking in the workplace, at the current 28% prevalence of unrestricted smoking in the office workplace.  相似文献   

7.
The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, we describe distributions of ETS chemical concentrations and the characteristics of those distributions (e.g., whether the distribution was log normal for a given constituent) for the workplace exposure. Next, we present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, we derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS (extrapolated from 1 day to 1 week) and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).  相似文献   

8.
Demonstration of a dose-response relationship for environmental tobacco smoke (ETS) is an important indication of causality. Central to the analysis and interpretation of dose-response relations as described in epidemiological studies is the relationship between dose and exposure. It must be recognized that in studies of ETS we have only surrogate measures of dose, and these surrogate measures (based on exposure) are imperfect. The question-based measures of ETS exposure generally have not been standardized, may have limited validity and reliability, and cannot comprehensively describe total ETS exposure, exposure to individual ETS components, nor doses of biologically relevant agents at target sites. Nevertheless, useful data have been yielded in epidemiologic studies linking ETS exposure to increased respiratory infection and symptoms, reduced lung growth in children, and increased lung cancer in nonsmoking adults. The more consistent exposure-response data for studies on acute health in children may reflect the greater difficulty in measuring exposure in studies of chronic health in adults.  相似文献   

9.
Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine particulate matter of 2.5 μm or smaller (PM2.5). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS‐PM) Model developed by the U.S. Environmental Protection Agency estimates distributions of outdoor and indoor PM2.5 exposure for a specified population based on ambient concentrations and indoor emissions sources. A critical assessment was conducted of the methodology and data used in SHEDS‐PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass‐balance approach, which is comparable to best practices. The default inputs in SHEDS‐PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the proportion of smokers and “other smokers” and cigarette emission rate were found to be important. SHEDS‐PM does not currently account for in‐vehicle ETS exposure; however, in‐vehicle ETS‐related PM2.5 levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass‐balance‐based methodology for estimating in‐vehicle ETS PM2.5 concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS‐PM model. Interindividual variability for ETS exposure was quantified. Geographic variability in ETS exposure was quantified based on the varying prevalence of smokers in five selected locations in the United States.  相似文献   

10.
The wide-scale use of methyl tertiary butyl ether (MTBE) in gasoline has resulted in substantial public controversy and action to ban or control its use due to perceived impacts on water quality. Because oxygenates are still required under federal law, considerable research has focused on ethanol as a substitute for MTBE. In this article, we summarize the currently available literature on the air and water quality risks and benefits of MTBE versus ethanol as alternative fuel oxygenates. We find that MTBE-fuel blends are likely to have substantial air quality benefits; ethanol-fuel blends appear to offer similar benefits, but these may be at least partially negated because of ethanol's propensity to increase emissions and ambient concentrations of some air contaminants. Releases of gasoline containing either MTBE or ethanol could have an impact on some drinking water sources, although the impacts associated with MTBE tend to relate to aesthetics (i.e., taste and odor), whereas the impacts associated with ethanol generally relate to health risk (i.e., greater exposure to gasoline constituents such as benzene). It is likely that these water quality impacts will be outweighed by the air quality benefits associated with MTBE and perhaps ethanol use, which affect a much larger population. A lack of data on environmental exposures and associated health impacts hinders the completion of a comprehensive quantitative risk-benefit analysis, and the available air and water quality data should be evaluated in a broader risk-management context, which considers the potential life-cycle impacts, costs, and feasibility associated with alternative fuel oxygenates.  相似文献   

11.
The decision process involved in cleaning sites contaminated with hazardous, mixed, and radioactive materials is supported often by results obtained from computer models. These results provide limits within which a decision-maker can judge the importance of individual transport and fate processes, and the likely outcome of alternative cleanup strategies. The transport of hazardous materials may occur predominately through one particular pathway but, more often, actual or potential transport must be evaluated across several pathways and media. Multimedia models are designed to simulate the transport of contaminants from a source to a receptor through more than one environmental pathway. Three such multimedia models are reviewed here: MEPAS, MMSOILS, and PRESTO-EPA-CPG. The reviews are based on documentation provided with the software, on published reviews, on personal interviews with the model developers, and on model summaries extracted from computer databases and expert systems. The three models are reviewed within the context of specific media components: air, surface water, ground water, and food chain. Additional sections evaluate the way that these three models calculate human exposure and dose and how they report uncertainty. Special emphasis is placed on how each model handles radio-nuclide transport within specific media. For the purpose of simulating the transport, fate and effects of radioactive contaminants through more than one pathway, both MEPAS and PRESTO-EPA-CPG are adequate for screening studies; MMSOILS only handles nonradioactive substances and must be modified before it can be used in these same applications. Of the three models, MEPAS is the most versatile, especially if the user needs to model the transport, fate, and effects of hazardous and radioactive contaminants.  相似文献   

12.
Although occupational exposure limits are sought to establish health-based standards, they do not always give a sufficient basis for planning an indoor air climate that is good and comfortable for the occupants in industrial work rooms. This paper considers methodologies by which the desired level, i.e., target level, of air quality in industrial settings can be defined, taking into account feasibility issues. Risk assessment based on health criteria is compared with risk-assessment based on "Best Available Technology" (BAT). Because health-based risk estimates at low concentration regions are rather inaccurate, the technology-based approach is emphasized. The technological approach is based on information on the prevailing concentrations in industrial work environments and the benchmark air quality attained with the best achievable technology. The prevailing contaminant concentrations are obtained from a contaminant exposure databank, and the benchmark air quality by field measurements in industrial work rooms equipped with advanced ventilation and production technology. As an example, the target level assessment has been applied to formaldehyde, total inorganic dust and hexavalent chromium, which are common contaminants in work room air.  相似文献   

13.
There is increasing interest in the integration of quantitative risk analysis with benefit-cost and cost-effectiveness methods to evaluate environmental health policy making and perform comparative analyses. However, the combined use of these methods has revealed deficiencies in the available methods, and the lack of useful analytical frameworks currently constrains the utility of comparative risk and policy analyses. A principal issue in integrating risk and economic analysis is the lack of common performance metrics, particularly when conducting comparative analyses of regulations with disparate health endpoints (e.g., cancer and noncancer effects or risk-benefit analysis) and quantitative estimation of cumulative risk, whether from exposure to single agents with multiple health impacts or from exposure to mixtures. We propose a general quantitative framework and examine assumptions required for performing analyses of health risks and policies. We review existing and proposed risk and health-impact metrics for evaluating policies designed to protect public health from environmental exposures, and identify their strengths and weaknesses with respect to their use in a general comparative risk and policy analysis framework. Case studies are presented to demonstrate applications of this framework with risk-benefit and air pollution risk analyses. Through this analysis, we hope to generate discussions regarding the data requirements, analytical approaches, and assumptions required for general models to be used in comparative risk and policy analysis.  相似文献   

14.
Burgman  Mark A.  Keith  David A.  Walshe  Terry V. 《Risk analysis》1999,19(4):585-598
Australian state and federal agencies use a broad range of methods for setting conservation priorities for species at risk. Some of these are based on rule sets developed by the International Union for the Conservation of Nature, while others use point scoring protocols to assess threat. All of them ignore uncertainty in the data. In this study, we assessed the conservation status of 29 threatened vascular plants from Tasmania and New South Wales using a variety of methods including point scoring and rule-based approaches. In addition, several methods for dealing with uncertainty in the data were applied to each of the priority-setting schemes. The results indicate that the choice of a protocol for setting priorities and the choice of the way in which uncertainty is treated may make important differences to the resulting assessments of risk. The choice among methods needs to be rationalized within the management context in which it is to be applied. These methods are not a substitute for more formal risk assessment.  相似文献   

15.
There is considerable interest in assessing exposure to environmental tobacco smoke (ETS) and in understanding the factors that affect exposure at various venues. The impact of these complex factors can be researched only if monitoring studies are carefully designed. Prior work by Jenkins et al. gathered personal monitor and diary data from 1,564 nonsmokers in 16 metropolitan areas of the United States and compared workplace exposures to ETS with exposures away from work. In this study, these data were probed further to examine (1) the correspondence between work and away-from-work exposure concentrations of ETS; (2) the variability in exposure concentration levels across cities; and (3) the association of ETS exposure concentrations with select socioeconomic, occupation, and lifestyle variables. The results indicate (1) at the population level, there was a positive association between ETS concentrations at the work and away-from-work environments; (2) exposure concentration levels across the 16 cities under consideration were highly variable; and (3) exposure concentration levels were significantly associated with occupation, education, household income, age, and dietary factors. Workplace smoking restrictions were associated with low ETS concentration levels at work as well as away from work. Generally, the same cities that exhibited either lower or higher away-from-work exposure concentration levels also showed lower or higher work exposure concentration levels. The observations suggest that similar avoidance characteristics as well as socioeconomic and other lifestyle factors that affect exposure to ETS may have been in operation in both away-from-work and work settings.  相似文献   

16.
Siming You  Man Pun Wan 《Risk analysis》2015,35(8):1488-1502
A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow‐induced particle resuspension [AIPR] and walking‐induced particle resuspension [WIPR]) were derived based on two‐compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose‐response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0–0.5 hours and from 0.54 to 0.57 during 0.5–4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0–0.5 hours and from 0.87 to 1 during 0.5–4 hours. Sensitivity analysis was conducted based on the design‐of‐experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.  相似文献   

17.
Currently, there is a trend away from the use of single (often conservative) estimates of risk to summarize the results of risk analyses in favor of stochastic methods which provide a more complete characterization of risk. The use of such stochastic methods leads to a distribution of possible values of risk, taking into account both uncertainty and variability in all of the factors affecting risk. In this article, we propose a general framework for the analysis of uncertainty and variability for use in the commonly encountered case of multiplicative risk models, in which risk may be expressed as a product of two or more risk factors. Our analytical methods facilitate the evaluation of overall uncertainty and variability in risk assessment, as well as the contributions of individual risk factors to both uncertainty and variability which is cumbersome using Monte Carlo methods. The use of these methods is illustrated in the analysis of potential cancer risks due to the ingestion of radon in drinking water.  相似文献   

18.
Children are becoming an increasingly important focus for exposure and risk assessments because they are more sensitive than adults to environmental contaminants. A necessary step in measuring the extent of children's exposure and in calculating risk assessments is to document how and where children spend their time. This 1990-1991 survey of 1000 households was designed for this purpose, targeting children between 5 and 12 years of age, in six states in varied geographic regions. The behavior of children was sampled on both weekdays and weekends over all four seasons of the year using a retrospective time diary to allocate time to activities during the previous 24 h. Information was obtained on the kinds and locations of activities, the nature of the microenvironments of the locations, and the time spent in the different environments. Measures of variability in addition to mean hours per day are reported. Results of this study closely match those of earlier research on California children's activities done by the California Air Resources Board. One important finding of the survey was that 5- to 12-year-old children in all geographic regions spend most of their time indoors at home, indicating that risk assessments should focus on indoor, on-site hazards.  相似文献   

19.
David M. Stieb 《Risk analysis》2012,32(12):2133-2151
The monetized value of avoided premature mortality typically dominates the calculated benefits of air pollution regulations; therefore, characterization of the uncertainty surrounding these estimates is key to good policymaking. Formal expert judgment elicitation methods are one means of characterizing this uncertainty. They have been applied to characterize uncertainty in the mortality concentration‐response function, but have yet to be used to characterize uncertainty in the economic values placed on avoided mortality. We report the findings of a pilot expert judgment study for Health Canada designed to elicit quantitative probabilistic judgments of uncertainties in Value‐per‐Statistical‐Life (VSL) estimates for use in an air pollution context. The two‐stage elicitation addressed uncertainties in both a base case VSL for a reduction in mortality risk from traumatic accidents and in benefits transfer‐related adjustments to the base case for an air quality application (e.g., adjustments for age, income, and health status). Results for each expert were integrated to develop example quantitative probabilistic uncertainty distributions for VSL that could be incorporated into air quality models.  相似文献   

20.
Cakmak  Sabit  Burnett  Richard T.  Krewski  Daniel 《Risk analysis》1999,19(3):487-496
The association between daily fluctuations in ambient particulate matter and daily variations in nonaccidental mortality have been extensively investigated. Although it is now widely recognized that such an association exists, the form of the concentration–response model is still in question. Linear, no threshold and linear threshold models have been most commonly examined. In this paper we considered methods to detect and estimate threshold concentrations using time series data of daily mortality rates and air pollution concentrations. Because exposure is measured with error, we also considered the influence of measurement error in distinguishing between these two completing model specifications. The methods were illustrated on a 15-year daily time series of nonaccidental mortality and particulate air pollution data in Toronto, Canada. Nonparametric smoothed representations of the association between mortality and air pollution were adequate to graphically distinguish between these two forms. Weighted nonlinear regression methods for relative risk models were adequate to give nearly unbiased estimates of threshold concentrations even under conditions of extreme exposure measurement error. The uncertainty in the threshold estimates increased with the degree of exposure error. Regression models incorporating threshold concentrations could be clearly distinguished from linear relative risk models in the presence of exposure measurement error. The assumption of a linear model given that a threshold model was the correct form usually resulted in overestimates in the number of averted premature deaths, except for low threshold concentrations and large measurement error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号