首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

2.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

3.
Let X be lognormal(μ,σ2) with density f(x); let θ > 0 and define . We study properties of the exponentially tilted density (Esscher transform) fθ(x) = e?θxf(x)/L(θ), in particular its moments, its asymptotic form as θ and asymptotics for the saddlepoint θ(x) determined by . The asymptotic formulas involve the Lambert W function. The established relations are used to provide two different numerical methods for evaluating the left tail probability of the sum of lognormals Sn=X1+?+Xn: a saddlepoint approximation and an exponential tilting importance sampling estimator. For the latter, we demonstrate logarithmic efficiency. Numerical examples for the cdf Fn(x) and the pdf fn(x) of Sn are given in a range of values of σ2,n and x motivated by portfolio value‐at‐risk calculations.  相似文献   

4.
For the stationary invertible moving average process of order one with unknown innovation distribution F, we construct root-n   consistent plug-in estimators of conditional expectations E(h(Xn+1)|X1,…,Xn)E(h(Xn+1)|X1,,Xn). More specifically, we give weak conditions under which such estimators admit Bahadur-type representations, assuming some smoothness of h or of F. For fixed h it suffices that h   is locally of bounded variation and locally Lipschitz in L2(F)L2(F), and that the convolution of h and F   is continuously differentiable. A uniform representation for the plug-in estimator of the conditional distribution function P(Xn+1?·|X1,…,Xn)P(Xn+1?·|X1,,Xn) holds if F has a uniformly continuous density. For a smoothed version of our estimator, the Bahadur representation holds uniformly over each class of functions h that have an appropriate envelope and whose shifts are F-Donsker, assuming some smoothness of F. The proofs use empirical process arguments.  相似文献   

5.
Let X1,…, Xn be random variables symmetric about θ from a common unknown distribution Fθ(x) =F(x–θ). To test the null hypothesis H0:θ= 0 against the alternative H1:θ > 0, permutation tests can be used at the cost of computational difficulties. This paper investigates alternative tests that are computationally simpler, notably some bootstrap tests which are compared with permutation tests. Of these the symmetrical bootstrap-f test competes very favourably with the permutation test in terms of Bahadur asymptotic efficiency, so it is a very attractive alternative.  相似文献   

6.
This paper deals with a sequence-compound estimation. The component problem is the squared error loss estimation of θ?[a,b] based on an observation X whose p.d.f. is of the form u(x)c(θ)exp(?xθ). For each 0<t<12 a class of sequence-compound estimators ψ?=ψ?1,ψ?2,…) is exhibited whose compound risk (average of risks) up to stage n differs from the Bayes envelope (in the component problem) w.r.t. the empiric distribution Gn of the parameters involved up to stage n by a quantity of order O(n?δt) for a δ>0. It is also shown that at any stage i the difference of the risk of ψ?i and the risk of the Bayes response w.r.t. Gi?1 is O(i?δt). Examples of the above type of families are given where δ is min{1,2ab} and t is arbitrarily close to 12. Here it may be worthwhile to mention that a rate O(n?12) or better has not yet been obtained even in a very special family of densities.  相似文献   

7.
An estimating equation for a parameter θ, based on an observation ?, is an equation g(x,θ)=0 which can be solved for θ in terms of x. An estimating equation is unbiased if the funaction g has 0 mean for every θ. For the case when the form of the frequency function p(x,θ) is completely specified up to the unknown real parameter θ, the optimality of the m.1 equation ?logp=0 in the class of all unbiased estimating equations was established by Godambe (1960). In this paper we allow the form of the frequency function p to vary assuming that x=(x1,…,xn)?Rn and that under p, E(xi)=θ. x1,…, xn are independent observations on a variate x, it is shown that among all the unbiased estimating equations for θ, x??θ=0 is uniquely optimum up to a constant multiple.  相似文献   

8.
The order statistics from a sample of size n≥3 from a discrete distribution form a Markov chain if and only if the parent distribution is supported by one or two points. More generally, a necessary and sufficient condition for the order statistics to form a Markov chain for (n≥3) is that there does not exist any atom x0 of the parent distribution F satisfying F(x0-)>0 and F(x0)<1. To derive this result a formula for the joint distribution of order statistics is proved, which is of an interest on its own. Many exponential characterizations implicitly assume the Markov property. The corresponding putative geometric characterizations cannot then be reasonably expected to obtain. Some illustrative geometric characterizations are discussed.  相似文献   

9.
10.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

11.
Let X U (1) < X U (2) < … < X U ( n ) < … be the sequence of the upper record values from a population with common distribution function F. In this paper, we first give a theorem to characterize the generalized mixtures of geometric distribution by the relation between E[(X U ( n +1)X U ( n ))2|X U ( n ) = x] and the function of the failure rate of the distribution, for any positive integer n. Secondly, we also use the same relation to characterize the generalized mixtures of exponential distribution. The characterizing relations were motivated by the work of Balakrishnan and Balasubramanian (1995). Received: March 31, 1999; revised version: November 22, 1999  相似文献   

12.
13.
In this paper, we consider the prediction problem in multiple linear regression model in which the number of predictor variables, p, is extremely large compared to the number of available observations, n  . The least-squares predictor based on a generalized inverse is not efficient. We propose six empirical Bayes estimators of the regression parameters. Three of them are shown to have uniformly lower prediction error than the least-squares predictors when the vector of regressor variables are assumed to be random with mean vector zero and the covariance matrix (1/n)XtX(1/n)XtX where Xt=(x1,…,xn)Xt=(x1,,xn) is the p×np×n matrix of observations on the regressor vector centered from their sample means. For other estimators, we use simulation to show its superiority over the least-squares predictor.  相似文献   

14.
A problem of selecting populations better than a control is considered. When the populations are uniformly distributed, empirical Bayes rules are derived for a linear loss function for both the known control parameter and the unknown control parameter cases. When the priors are assumed to have bounded supports, empirical Bayes rules for selecting good populations are derived for distributions with truncation parameters (i.e. the form of the pdf is f(x|θ)= pi(x)ci(θ)I(0, θ)(x)). Monte Carlo studies are carried out which determine the minimum sample sizes needed to make the relative errors less than ε for given ε-values.  相似文献   

15.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

16.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

17.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

18.
19.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号