首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider k( ? 2) normal populations whose means are all known or unknown and whose variances are unknown. Let σ2[1] ? ??? ? σ[k]2 denote the ordered variances. Our goal is to select a non empty subset of the k populations whose size is at most m(1 ? m ? k ? 1) so that the population associated with the smallest variance (called the best population) is included in the selected subset with a guaranteed minimum probability P* whenever σ2[2][1]2 ? δ* > 1, where P* and δ* are specified in advance of the experiment. Based on samples of size n from each of the populations, we propose and investigate a procedure called RBCP. We also derive some asymptotic results for our procedure. Some comparisons with an earlier available procedure are presented in terms of the average subset sizes for selected slippage configurations based on simulations. The results are illustrated by an example.  相似文献   

2.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

3.
Given k( ? 3) independent normal populations with unknown means and unknown and unequal variances, a single-stage sampling procedure to select the best t out of k populations is proposed and the procedure is completely independent of the unknown means and the unknown variances. For various combinations of k and probability requirement, tables of procedure parameters are provided for practitioners.  相似文献   

4.
An observation ×o is to be classified into one of two normal populations φ1 and φ2. A classification rule, the Two-stage sample Rule, R(TS), whose probability of misclassification, P[MC], is independent of the common but unknown variance is proposed. Some optimal properties of R(TS) are also discussed and some values of P[MC | R(TS)], the probability of misclassification given the rule R(TS), are tabulated.  相似文献   

5.
Suppose π1,…,πk are k normal populations with πi having unknown mean μi and unknown variance σ2. The population πi will be called δ?-optimal (or good) if μi is within a specified amountδ? of the largest mean. A two stage procedure is proposed which selects a subset of the k populations and guarantees with probability at least P? that the selected subset contains only δ?-optimal πi ’s. In addition to screening out non-good populations the rule guarantees a high proportion of sufficiently good πi’S will be selected.  相似文献   

6.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

7.
A sequence of independent lifetimes X 1,…, X m , X m+1,…, X n were observed from inverse Weibull distribution with mean stress θ1 and reliability R 1(t 0) at time t 0 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after X m by change in mean stress θ1 and in reliability R 2(t 0) at time t 0. The Bayes estimators of m, R 1(t 0) and R 2(t 0) are derived when a poor and a more detailed prior information is introduced into the inferential procedure. The effects of correct and wrong prior information on the Bayes estimators are studied.  相似文献   

8.
Let π1…, πk denote k(≥ 2) populations with unknown means μ1 , …, μk and variances σ1 2 , …, σk 2 , respectively and let πo denote the control population having mean μo and variance σo 2 . It is assumed that these populations are normally distributed with correlation matrix {ρij}. The goal is to select a subset, of populations of π1 , …, πk which contains all the populations with means larger than or equal to the mean of the control one. Procedures are given for selecting such a subset so that the probability that all the populations with means larger than or equal to the mean of the control one are included in the selected subset is at least equal to a predetermined value P?(l/k < P? < 1). The goal treated here is a first step screening procedure that allows the experimenter to choose a subset and withhold judgement about which one has the largest mean. Then, if the one with the largest mean is desired it can be chosen from the selected subset on the basis of cost and other considerations. Percentage points are also included.  相似文献   

9.
Consider K(>2) independent populations π1,..,π k such that observations obtained from π k are independent and normally distributed with unknown mean µ i and unknown variance θ i i = 1,…,k. In this paper, we provide lower percentage points of Hartley's extremal quotient statistic for testing an interval hypothesisH 0 θ [k] θ [k] > δ vs. H a : θ [k] θ [1] ≤ δ , where δ ≥ 1 is a predetermined constant and θ [k](θ [1]) is the max (min) of the θi,…,θ k . The least favorable configuration (LFC) for the test under H 0 is determined in order to obtain the lower percentage points. These percentage points can also be used to construct an upper confidence bound for θ[k][1].  相似文献   

10.
A class of invariant Bayes rules is derived for testing homogeneity of k (≥2) different populations against (kt) slippage alternatives that some (unknown) subset of size t of the given populations has parameter larger than the remaining k-t, where t is a given integer between 1 and k-1. For a similar problem in nonparametric situations, locally best tests based on ranks are derived.  相似文献   

11.
The Galton–Watson process is a Markov chain modeling the population size of independently reproducing particles giving birth to k offspring with probability pk, k ? 0. In this paper, we consider defective Galton–Watson processes having defective reproduction laws, so that ∑k ? 0pk = 1 ? ? for some ? ∈ (0, 1). In this setting, each particle may send the process to a graveyard state Δ with probability ?. Such a Markov chain, having an enhanced state space {0, 1, …}∪{Δ}, gets eventually absorbed either at 0 or at Δ. Assuming that the process has avoided absorption until the observation time t, we are interested in its trajectories as t → ∞ and ? → 0.  相似文献   

12.
The probabilities and factorial moments of the univar iate and multivariate generalized (or compound) discrete di st r-Lbut Lons with probability generating functions H(t)=F(G(t)) and H(t1,…,tk)=F(G(t1,…,tk))or H(t1,…,tk) = F(G1(t1),…, Gk( tk)) are derived using finite difference operators.  相似文献   

13.
The basic model in this paper is an AR(1) model with a structural break in the AR parameter β at an unknown time k0. That is, yt = β1yt ? 1I{t ? k0} + β2yt ? 1I{t > k0} + ?t, t = 1, 2, ???, T, where I{ · } denotes the indicator function. Suppose |β1| < 1, |β2| < 1, and {?t, t ? 1} is a sequence of i.i.d. random variables which are in the domain of attraction of the normal law with zero mean and possibly infinite variance, then the limiting distributions for the least squares estimators of β1 and β2 are studied in the present paper, which extend some results in Chong (2001 Chong, T.L. (2001). Structural change in AR(1) models. Econometric Theory 17:87155.[Crossref], [Web of Science ®] [Google Scholar]).  相似文献   

14.
We study the problem of approximating a stochastic process Y = {Y(t: tT} with known and continuous covariance function R on the basis of finitely many observations Y(t 1,), …, Y(t n ). Dependent on the knowledge about the mean function, we use different approximations ? and measure their performance by the corresponding maximum mean squared error sub t∈T E(Y(t) ? ?(t))2. For a compact T ? ? p we prove sufficient conditions for the existence of optimal designs. For the class of covariance functions on T 2 = [0, 1]2 which satisfy generalized Sacks/Ylvisaker regularity conditions of order zero or are of product type, we construct sequences of designs for which the proposed approximations perform asymptotically optimal.  相似文献   

15.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

16.
Consider that we have a collection of k populations π1, π2…,πk. The quality of the ith population is characterized by a real parameter θi and the population is to be designated as superior or inferior depending on how much the θi differs from θmax = max{θ1, θ2,…,θk}. From the set {π1, π2,…,πk}, we wish to select the subset of superior populations. In this paper we devise rules of selection which have the property that their selected set excludes all the inferior populations with probability at least 1?α, where a is a specified number.  相似文献   

17.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

18.
Let π1 and π2 be two exponential populations with location parameters α and β respectively. It is shown that the probability of misclassification for the optimal rule, RE, depends on α and β only through their ratio α/β=r, and that the smaller the ratio r (i.e. the smaller α is compared to β), the greater the superiority of the optimal rule RE over the commonly used rule RN. When α and β are unknown, the sample-based version RE(s) of RE exhibits the same pattern of superiority over the sample-based RN(s) of RN.  相似文献   

19.
This paper investigates two “non-exact” t-type tests, t( k2) and t(k2), of the individual coefficients of a linear regression model, based on two ordinary ridge estimators. The reported results are built on a simulation study covering 84 different models. For models with large standard errors, the ridge-based t-tests have correct levels with considerable gain in powers over those of the least squares t-test, t(0). For models with small standard errors, t(k1) is found to be liberal and is not safe to use while, t(k2) is found to slightly exceed the nominal level in few cases. When tie two ridge tests art: not winners, the results indicate that they don't loose much against t(0).  相似文献   

20.
Let {W(s); 8 ≥ 0} be a standard Wiener process, and let βN = (2aN (log (N/aN) + log log N)-1/2, 0 < αNN < ∞, where αN↑ and αN/N is a non-increasing function of N, and define γN(t) = βN[W(nN + taN) ? W(nN)), 0 ≥ t ≥ 1, with nN = NaN. Let K = {x ? C[0,1]: x is absolutely continuous, x(0) = 0 and }. We prove that, with probability one, the sequence of functions {γN(t), t ? [0,1]} is relatively compact in C[0,1] with respect to the sup norm ||·||, and its set of limit points is K. With aN = N, our result reduces to Strassen's well-known theorem. Our method of proof follows Strassen's original, direct approach. The latter, however, contains an oversight which, in turn, renders his proof invalid. Strassen's theorem is true, of course, and his proof can also be rectified. We do this in a somewhat more general context than that of his original theorem. Applications to partial sums of independent identically distributed random variables are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号