首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for good performance. In this paper, we present such a parametric family for adaptive sampling on high dimensional binary spaces. A practical motivation for this problem is variable selection in a linear regression context. We want to sample from a Bayesian posterior distribution on the model space using an appropriate version of Sequential Monte Carlo. Raw versions of Sequential Monte Carlo are easily implemented using binary vectors with independent components. For high dimensional problems, however, these simple proposals do not yield satisfactory results. The key to an efficient adaptive algorithm are binary parametric families which take correlations into account, analogously to the multivariate normal distribution on continuous spaces. We provide a review of models for binary data and make one of them work in the context of Sequential Monte Carlo sampling. Computational studies on real life data with about a hundred covariates suggest that, on difficult instances, our Sequential Monte Carlo approach clearly outperforms standard techniques based on Markov chain exploration.  相似文献   

2.
Different strategies have been proposed to improve mixing and convergence properties of Markov Chain Monte Carlo algorithms. These are mainly concerned with customizing the proposal density in the Metropolis–Hastings algorithm to the specific target density and require a detailed exploratory analysis of the stationary distribution and/or some preliminary experiments to determine an efficient proposal. Various Metropolis–Hastings algorithms have been suggested that make use of previously sampled states in defining an adaptive proposal density. Here we propose a general class of adaptive Metropolis–Hastings algorithms based on Metropolis–Hastings-within-Gibbs sampling. For the case of a one-dimensional target distribution, we present two novel algorithms using mixtures of triangular and trapezoidal densities. These can also be seen as improved versions of the all-purpose adaptive rejection Metropolis sampling (ARMS) algorithm to sample from non-logconcave univariate densities. Using various different examples, we demonstrate their properties and efficiencies and point out their advantages over ARMS and other adaptive alternatives such as the Normal Kernel Coupler.  相似文献   

3.
Heng Lian 《Statistics》2013,47(6):777-785
Improving efficiency of the importance sampler is at the centre of research on Monte Carlo methods. While the adaptive approach is usually not so straightforward within the Markov chain Monte Carlo framework, the counterpart in importance sampling can be justified and validated easily. We propose an iterative adaptation method for learning the proposal distribution of an importance sampler based on stochastic approximation. The stochastic approximation method can recruit general iterative optimization techniques like the minorization–maximization algorithm. The effectiveness of the approach in optimizing the Kullback divergence between the proposal distribution and the target is demonstrated using several examples.  相似文献   

4.
Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing the probability of acceptance. In this paper, we propose two new adaptive MCMC algorithms based on the Independent Metropolis–Hastings algorithm. In the first, we adjust the proposal to minimize an estimate of the cross-entropy between the target and proposal distributions, using the experience of pre-runs. This approach provides a general technique for deriving natural adaptive formulae. The second approach uses multiple parallel chains, and involves updating chains individually, then updating a proposal density by fitting a Bayesian model to the population. An important feature of this approach is that adapting the proposal does not change the limiting distributions of the chains. Consequently, the adaptive phase of the sampler can be continued indefinitely. We include results of numerical experiments indicating that the new algorithms compete well with traditional Metropolis–Hastings algorithms. We also demonstrate the method for a realistic problem arising in Comparative Genomics.  相似文献   

5.
Abstract.  The sampling-importance resampling (SIR) algorithm aims at drawing a random sample from a target distribution π. First, a sample is drawn from a proposal distribution q , and then from this a smaller sample is drawn with sample probabilities proportional to the importance ratios π/ q . We propose here a simple adjustment of the sample probabilities and show that this gives faster convergence. The results indicate that our version converges better also for small sample sizes. The SIR algorithms are compared with the Metropolis–Hastings (MH) algorithm with independent proposals. Although MH converges asymptotically faster, the results indicate that our improved SIR version is better than MH for small sample sizes. We also establish a connection between the SIR algorithms and importance sampling with normalized weights. We show that the use of adjusted SIR sample probabilities as importance weights reduces the bias of the importance sampling estimate.  相似文献   

6.
The HastingsMetropolis algorithm is a general MCMC method for sampling from a density known up to a constant. Geometric convergence of this algorithm has been proved under conditions relative to the instrumental (or proposal) distribution. We present an inhomogeneous HastingsMetropolis algorithm for which the proposal density approximates the target density, as the number of iterations increases. The proposal density at the n th step is a non-parametric estimate of the density of the algorithm, and uses an increasing number of i.i.d. copies of the Markov chain. The resulting algorithm converges (in n ) geometrically faster than a HastingsMetropolis algorithm with any fixed proposal distribution. The case of a strictly positive density with compact support is presented first, then an extension to more general densities is given. We conclude by proposing a practical way of implementation for the algorithm, and illustrate it over simulated examples.  相似文献   

7.
As the number of applications for Markov Chain Monte Carlo (MCMC) grows, the power of these methods as well as their shortcomings become more apparent. While MCMC yields an almost automatic way to sample a space according to some distribution, its implementations often fall short of this task as they may lead to chains which converge too slowly or get trapped within one mode of a multi-modal space. Moreover, it may be difficult to determine if a chain is only sampling a certain area of the space or if it has indeed reached stationarity. In this paper, we show how a simple modification of the proposal mechanism results in faster convergence of the chain and helps to circumvent the problems described above. This mechanism, which is based on an idea from the field of “small-world” networks, amounts to adding occasional “wild” proposals to any local proposal scheme. We demonstrate through both theory and extensive simulations, that these new proposal distributions can greatly outperform the traditional local proposals when it comes to exploring complex heterogenous spaces and multi-modal distributions. Our method can easily be applied to most, if not all, problems involving MCMC and unlike many other remedies which improve the performance of MCMC it preserves the simplicity of the underlying algorithm.  相似文献   

8.
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.  相似文献   

9.
The adaptive rejection sampling (ARS) algorithm is a universal random generator for drawing samples efficiently from a univariate log-concave target probability density function (pdf). ARS generates independent samples from the target via rejection sampling with high acceptance rates. Indeed, ARS yields a sequence of proposal functions that converge toward the target pdf, so that the probability of accepting a sample approaches one. However, sampling from the proposal pdf becomes more computational demanding each time it is updated. In this work, we propose a novel ARS scheme, called Cheap Adaptive Rejection Sampling (CARS), where the computational effort for drawing from the proposal remains constant, decided in advance by the user. For generating a large number of desired samples, CARS is faster than ARS.  相似文献   

10.
We propose to combine two quite powerful ideas that have recently appeared in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and delayed rejection. The ergodicity of the resulting non-Markovian sampler is proved, and the efficiency of the combination is demonstrated with various examples. We present situations where the combination outperforms the original methods: adaptation clearly enhances efficiency of the delayed rejection algorithm in cases where good proposal distributions are not available. Similarly, delayed rejection provides a systematic remedy when the adaptation process has a slow start.  相似文献   

11.
“Perfect sampling” enables exact draws from the invariant measure of a Markov chain. We show that the independent Metropolis-Hastings chain has certain stochastic monotonicity properties that enable a perfect sampling algorithm to be implemented, at least when the candidate is overdispersed with respect to the target distribution. We prove that the algorithm has an optimal geometric convergence rate, and applications show that it may converge extreme rapidly.  相似文献   

12.
Abstract.  We consider the problem of estimating a collection of integrals with respect to an unknown finite measure μ from noisy observations of some of the integrals. A new method to carry out Bayesian inference for the integrals is proposed. We use a Dirichlet or Gamma process as a prior for μ , and construct an approximation to the posterior distribution of the integrals using the sampling importance resampling algorithm and samples from a new multidimensional version of a Markov chain by Feigin and Tweedie. We prove that the Markov chain is positive Harris recurrent, and that the approximating distribution converges weakly to the posterior as the sample size increases, under a mild integrability condition. Applications to polymer chemistry and mathematical finance are given.  相似文献   

13.
Layer Sampling     
Layer sampling is an algorithm for generating variates from a non-normalized multidimensional distribution p( · ). It empirically constructs a majorizing function for p( · ) from a sequence of layers. The method first selects a layer based on the previous variate. Next, a sample is drawn from the selected layer, using a method such as Rejection Sampling. Layer sampling is regenerative. At regeneration times, the layers may be adapted to increase mixing of the Markov chain. Layer sampling may also be used to estimate arbitrary integrals, including normalizing constants.  相似文献   

14.
We present a sequential Monte Carlo algorithm for Markov chain trajectories with proposals constructed in reverse time, which is advantageous when paths are conditioned to end in a rare set. The reverse time proposal distribution is constructed by approximating the ratio of Green’s functions in Nagasawa’s formula. Conditioning arguments can be used to interpret these ratios as low-dimensional conditional sampling distributions of some coordinates of the process given the others. Hence, the difficulty in designing SMC proposals in high dimension is greatly reduced. Empirically, our method outperforms an adaptive multilevel splitting algorithm in three examples: estimating an overflow probability in a queueing model, the probability that a diffusion follows a narrowing corridor, and the initial location of an infection in an epidemic model on a network.  相似文献   

15.
Abstract.  We propose new control variates for variance reduction in estimation of mean values using the Metropolis–Hastings algorithm. Traditionally, states that are rejected in the Metropolis–Hastings algorithm are simply ignored, which intuitively seems to be a waste of information. We present a setting for construction of zero mean control variates for general target and proposal distributions and develop ideas for the standard Metropolis–Hastings and reversible jump algorithms. We give results for three simulation examples. We get best results for variates that are functions of the current state x and the proposal y , but we also consider variates that in addition are functions of the Metropolis–Hastings acceptance/rejection decision. The variance reduction achieved varies depending on the target distribution and proposal mechanisms used. In simulation experiments, we typically achieve relative variance reductions between 15% and 35%.  相似文献   

16.
In this article, to reduce computational load in performing Bayesian variable selection, we used a variant of reversible jump Markov chain Monte Carlo methods, and the Holmes and Held (HH) algorithm, to sample model index variables in logistic mixed models involving a large number of explanatory variables. Furthermore, we proposed a simple proposal distribution for model index variables, and used a simulation study and real example to compare the performance of the HH algorithm with our proposed and existing proposal distributions. The results show that the HH algorithm with our proposed proposal distribution is a computationally efficient and reliable selection method.  相似文献   

17.
Propp and Wilson (Random Structures and Algorithms (1996) 9: 223–252, Journal of Algorithms (1998) 27: 170–217) described a protocol called coupling from the past (CFTP) for exact sampling from the steady-state distribution of a Markov chain Monte Carlo (MCMC) process. In it a past time is identified from which the paths of coupled Markov chains starting at every possible state would have coalesced into a single value by the present time; this value is then a sample from the steady-state distribution.Unfortunately, producing an exact sample typically requires a large computational effort. We consider the question of how to make efficient use of the sample values that are generated. In particular, we make use of regeneration events (cf. Mykland et al. Journal of the American Statistical Association (1995) 90: 233–241) to aid in the analysis of MCMC runs. In a regeneration event, the chain is in a fixed reference distribution– this allows the chain to be broken up into a series of tours which are independent, or nearly so (though they do not represent draws from the true stationary distribution).In this paper we consider using the CFTP and related algorithms to create tours. In some cases their elements are exactly in the stationary distribution; their length may be fixed or random. This allows us to combine the precision of exact sampling with the efficiency of using entire tours.Several algorithms and estimators are proposed and analysed.  相似文献   

18.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

19.
Full likelihood-based inference for modern population genetics data presents methodological and computational challenges. The problem is of considerable practical importance and has attracted recent attention, with the development of algorithms based on importance sampling (IS) and Markov chain Monte Carlo (MCMC) sampling. Here we introduce a new IS algorithm. The optimal proposal distribution for these problems can be characterized, and we exploit a detailed analysis of genealogical processes to develop a practicable approximation to it. We compare the new method with existing algorithms on a variety of genetic examples. Our approach substantially outperforms existing IS algorithms, with efficiency typically improved by several orders of magnitude. The new method also compares favourably with existing MCMC methods in some problems, and less favourably in others, suggesting that both IS and MCMC methods have a continuing role to play in this area. We offer insights into the relative advantages of each approach, and we discuss diagnostics in the IS framework.  相似文献   

20.
Semiparametric Bayesian classification with longitudinal markers   总被引:1,自引:0,他引:1  
Summary.  We analyse data from a study involving 173 pregnant women. The data are observed values of the β human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号