首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the risk of contracting illness due to the consumption in the United States of hamburgers contaminated with enterohemorrhagic Escherichia coli (EHEC) of serogroup O157 produced from manufacturing beef imported from Australia. We have used a novel approach for estimating risk by using the prevalence and concentration estimates of E. coli O157 in lots of beef that were withdrawn from the export chain following detection of the pathogen. For the purpose of the present assessment an assumption was that no product is removed from the supply chain following testing. This, together with a number of additional conservative assumptions, leads to an overestimation of E. coli O157‐associated illness attributable to the consumption of ground beef patties manufactured only from Australian beef. We predict 49.6 illnesses (95%: 0.0–148.6) from the 2.46 billion hamburgers made from 155,000 t of Australian manufacturing beef exported to the United States in 2012. All these illness were due to undercooking in the home and less than one illness is predicted from consumption of hamburgers cooked to a temperature of 68 °C in quick‐service restaurants.  相似文献   

2.
A recent paper by Ferrier and Buzby provides a framework for selecting the sample size when testing a lot of beef trim for Escherichia coli O157:H7 that equates the averted costs of recalls and health damages from contaminated meats sold to consumers with the increased costs of testing while allowing for uncertainty about the underlying prevalence of contamination. Ferrier and Buzby conclude that the optimal sample size is larger than the current sample size. However, Ferrier and Buzby's optimization model has a number of errors, and their simulations failed to consider available evidence about the likelihood of the scenarios explored under the model. After correctly modeling microbial prevalence as dependent on portion size and selecting model inputs based on available evidence, the model suggests that the optimal sample size is zero under most plausible scenarios. It does not follow, however, that sampling beef trim for E. coli O157:H7, or food safety sampling more generally, should be abandoned. Sampling is not generally cost effective as a direct consumer safety control measure due to the extremely large sample sizes required to provide a high degree of confidence of detecting very low acceptable defect levels. Food safety verification sampling creates economic incentives for food producing firms to develop, implement, and maintain effective control measures that limit the probability and degree of noncompliance with regulatory limits or private contract specifications.  相似文献   

3.
《Risk analysis》2018,38(2):392-409
The relative contributions of exposure pathways associated with cattle‐manure‐borne Escherichia coli O157:H7 on public health have yet to be fully characterized. A stochastic, quantitative microbial risk assessment (QMRA) model was developed to describe a hypothetical cattle farm in order to compare the relative importance of five routes of exposure, including aquatic recreation downstream of the farm, consumption of contaminated ground beef processed with limited interventions, consumption of leafy greens, direct animal contact, and the recreational use of a cattle pasture. To accommodate diverse environmental and hydrological pathways, existing QMRAs were integrated with novel and simplistic climate and field‐level submodels. The model indicated that direct animal contact presents the greatest risk of illness per exposure event during the high pathogen shedding period. However, when accounting for the frequency of exposure, using a high‐risk exposure‐receptor profile, consumption of ground beef was associated with the greatest risk of illness. Additionally, the model was used to evaluate the efficacy of hypothetical interventions affecting one or more exposure routes; concurrent evaluation of multiple routes allowed for the assessment of the combined effect of preharvest interventions across exposure pathways—which may have been previously underestimated—as well as the assessment of the effect of additional downstream interventions. This analysis represents a step towards a full evaluation of the risks associated with multiple exposure pathways; future incorporation of variability associated with environmental parameters and human behaviors would allow for a comprehensive assessment of the relative contribution of exposure pathways at the population level.  相似文献   

4.
The objective of this study was to leverage quantitative risk assessment to investigate possible root cause(s) of foodborne illness outbreaks related to Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) infections in leafy greens in the United States. To this end, we developed the FDA leafy green quantitative risk assessment epidemic curve prediction model (FDA-LG QRA-EC) that simulated the lettuce supply chain. The model was used to predict the number of reported illnesses and the epidemic curve associated with lettuce contaminated with STEC O157 for a wide range of scenarios representing various contamination conditions and facility processing/sanitation practices. Model predictions were generated for fresh-cut and whole lettuce, quantifying the differing impacts of facility processing and home preparation on predicted illnesses. Our model revealed that the timespan (i.e., number of days with at least one reported illness) and the peak (i.e., day with the most predicted number of reported illnesses) of the epidemic curve of a STEC O157-lettuce outbreak were not strongly influenced by facility processing/sanitation practices and were indications of contamination pattern among incoming lettuce batches received by the facility or distribution center. Through comparisons with observed number of illnesses from recent STEC O157-lettuce outbreaks, the model identified contamination conditions on incoming lettuce heads that could result in an outbreak of similar size, which can be used to narrow down potential root cause hypotheses.  相似文献   

5.
The public health significance of transmission of ESBL‐producing Escherichia coli and Campylobacter from poultry farms to humans through flies was investigated using a worst‐case risk model. Human exposure was modeled by the fraction of contaminated flies, the number of specific bacteria per fly, the number of flies leaving the poultry farm, and the number of positive poultry houses in the Netherlands. Simplified risk calculations for transmission through consumption of chicken fillet were used for comparison, in terms of the number of human exposures, the total human exposure, and, for Campylobacter only, the number of human cases of illness. Comparing estimates of the worst‐case risk of transmission through flies with estimates of the real risk of chicken fillet consumption, the number of human exposures to ESBL‐producing E. coli was higher for chicken fillet as compared with flies, but the total level of exposure was higher for flies. For Campylobacter, risk values were nearly consistently higher for transmission through flies than for chicken fillet consumption. This indicates that the public health risk of transmission of both ESBL‐producing E. coli and Campylobacter to humans through flies might be of importance. It justifies further modeling of transmission through flies for which additional data (fly emigration, human exposure) are required. Similar analyses of other environmental transmission routes from poultry farms are suggested to precede further investigations into flies.  相似文献   

6.
Shiga‐toxin producing Escherichia coli (STEC) strains may cause human infections ranging from simple diarrhea to Haemolytic Uremic Syndrome (HUS). The five main pathogenic serotypes of STEC (MPS‐STEC) identified thus far in Europe are O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Because STEC strains can survive or grow during cheese making, particularly in soft cheeses, a stochastic quantitative microbial risk assessment model was developed to assess the risk of HUS associated with the five MPS‐STEC in raw milk soft cheeses. A baseline scenario represents a theoretical worst‐case scenario where no intervention was considered throughout the farm‐to‐fork continuum. The risk level assessed with this baseline scenario is the risk‐based level. The impact of seven preharvest scenarios (vaccines, probiotic, milk farm sorting) on the risk‐based level was expressed in terms of risk reduction. Impact of the preharvest intervention ranges from 76% to 98% of risk reduction with highest values predicted with scenarios combining a decrease of the number of cow shedding STEC and of the STEC concentration in feces. The impact of postharvest interventions on the risk‐based level was also tested by applying five microbiological criteria (MC) at the end of ripening. The five MCs differ in terms of sample size, the number of samples that may yield a value larger than the microbiological limit, and the analysis methods. The risk reduction predicted varies from 25% to 96% by applying MCs without preharvest interventions and from 1% to 96% with combination of pre‐ and postharvest interventions.  相似文献   

7.
《Risk analysis》2018,38(8):1718-1737
We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh‐cut romaine lettuce as the case study. Our model can (i) support the investigation of cross‐contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent‐based modeling framework to predict the pathogen prevalence and levels in bags of fresh‐cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh‐cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh‐cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh‐cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a “virtual laboratory,” can provide valuable insights into the effectiveness of individual and combined risk mitigation options.  相似文献   

8.
Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data   总被引:1,自引:0,他引:1  
In 1996, an outbreak of E. coli O157:H7-associated illness occurred in an elementary school in Japan. This outbreak has been studied in unusual detail, making this an important case for quantitative risk assessment. The availability of stored samples of the contaminated food allowed reliable estimation of exposure to the pathogens. Collection of fecal samples allowed assessment of the numbers infected, including asymptomatic cases. Comparison to other published dose-response studies for E. coli O157:H7 show that the strain that caused the outbreak studied here must have been considerably more infectious. We use this well-documented incident as an example to demonstrate how such information on the response to a single dose can be used for dose-response assessment. In particular, we demonstrate how the high infectivity limits the uncertainty in the low-dose region.  相似文献   

9.
The economically optimal sample size in a food safety test balances the marginal costs and marginal benefits of increasing the sample size. We provide a method for selecting the sample size when testing beef trim for Escherichia coli O157:H7 that equates the averted costs of recalls and health damages from contaminated meats sold to consumers with the increased costs of testing while allowing for uncertainty about the underlying prevalence rates of contamination. Using simulations, we show that, in most cases, the optimal sample size is larger than the current sample size of 60 and, in some cases, it exceeds 120. Moreover, lots with a lower prevalence rate have a higher expected damage because contamination is more difficult to detect. Our simulations indicate that these lots have a higher optimal sampling rate.  相似文献   

10.
Quantitative microbial risk assessment (QMRA) is a valuable tool that can be used to predict the risk associated with human exposure to specific microbial contaminants in water sources. The transparency inherent in the QMRA process benefits discussions between multidisciplinary teams because members of such teams have different expertise and their confidence in the risk assessment output will depend upon whether they regard the selected input data and assumptions as being suitable and/or plausible. Selection of input data requires knowledge of the availability of appropriate data sets, the limitations of using a particular data set, and the logic of using alternative approaches. In performing QMRA modeling and in the absence of directly relevant data, compromises must be made. One such compromise made is to use available Escherichia coli data and apply a ratio of enteric viruses to indicator E. coli in wastewater obtained from prior studies to estimate the concentration of enteric viruses in other wastewater types/sources. In this article, we have provided an argument for why we do not recommend the use of a pathogen to E. coli ratio to estimate virus concentrations in single household graywater and additionally suggested circumstances in which use of such a ratio may be justified.  相似文献   

11.
In the quest to model various phenomena, the foundational importance of parameter identifiability to sound statistical modeling may be less well appreciated than goodness of fit. Identifiability concerns the quality of objective information in data to facilitate estimation of a parameter, while nonidentifiability means there are parameters in a model about which the data provide little or no information. In purely empirical models where parsimonious good fit is the chief concern, nonidentifiability (or parameter redundancy) implies overparameterization of the model. In contrast, nonidentifiability implies underinformativeness of available data in mechanistically derived models where parameters are interpreted as having strong practical meaning. This study explores illustrative examples of structural nonidentifiability and its implications using mechanistically derived models (for repeated presence/absence analyses and dose–response of Escherichia coli O157:H7 and norovirus) drawn from quantitative microbial risk assessment. Following algebraic proof of nonidentifiability in these examples, profile likelihood analysis and Bayesian Markov Chain Monte Carlo with uniform priors are illustrated as tools to help detect model parameters that are not strongly identifiable. It is shown that identifiability should be considered during experimental design and ethics approval to ensure generated data can yield strong objective information about all mechanistic parameters of interest. When Bayesian methods are applied to a nonidentifiable model, the subjective prior effectively fabricates information about any parameters about which the data carry no objective information. Finally, structural nonidentifiability can lead to spurious models that fit data well but can yield severely flawed inferences and predictions when they are interpreted or used inappropriately.  相似文献   

12.
We develop a prioritization framework for foodborne risks that considers public health impact as well as three other factors (market impact, consumer risk acceptance and perception, and social sensitivity). Canadian case studies are presented for six pathogen‐food combinations: Campylobacter spp. in chicken; Salmonella spp. in chicken and spinach; Escherichia coli O157 in spinach and beef; and Listeria monocytogenes in ready‐to‐eat meats. Public health impact is measured by disability‐adjusted life years and the cost of illness. Market impact is quantified by the economic importance of the domestic market. Likert‐type scales are used to capture consumer perception and acceptance of risk and social sensitivity to impacts on vulnerable consumer groups and industries. Risk ranking is facilitated through the development of a knowledge database presented in the format of info cards and the use of multicriteria decision analysis (MCDA) to aggregate the four factors. Three scenarios representing different stakeholders illustrate the use of MCDA to arrive at rankings of pathogen‐food combinations that reflect different criteria weights. The framework provides a flexible instrument to support policymakers in complex risk prioritization decision making when different stakeholder groups are involved and when multiple pathogen‐food combinations are compared.  相似文献   

13.
Helicobacter pylori is a microaerophilic, gram‐negative bacterium that is linked to adverse health effects including ulcers and gastrointestinal cancers. The goal of this analysis is to develop the necessary inputs for a quantitative microbial risk assessment (QMRA) needed to develop a potential guideline for drinking water at the point of ingestion (e.g., a maximum contaminant level, or MCL) that would be protective of human health to an acceptable level of risk while considering sources of uncertainty. Using infection and gastric cancer as two discrete endpoints, and calculating dose‐response relationships from experimental data on humans and monkeys, we perform both a forward and reverse risk assessment to determine the risk from current reported surface water concentrations of H. pylori and an acceptable concentration of H. pylori at the point of ingestion. This approach represents a synthesis of available information on human exposure to H. pylori via drinking water. A lifetime risk of cancer model suggests that a MCL be set at <1 organism/L given a 5‐log removal treatment because we cannot exclude the possibility that current levels of H. pylori in environmental source waters pose a potential public health risk. Research gaps include pathogen occurrence in source and finished water, treatment removal rates, and determination of H. pylori risks from other water sources such as groundwater and recreational water.  相似文献   

14.
Topics in Microbial Risk Assessment: Dynamic Flow Tree Process   总被引:5,自引:0,他引:5  
Microbial risk assessment is emerging as a new discipline in risk assessment. A systematic approach to microbial risk assessment is presented that employs data analysis for developing parsimonious models and accounts formally for the variability and uncertainty of model inputs using analysis of variance and Monte Carlo simulation. The purpose of the paper is to raise and examine issues in conducting microbial risk assessments. The enteric pathogen Escherichia coli O157:H7 was selected as an example for this study due to its significance to public health. The framework for our work is consistent with the risk assessment components described by the National Research Council in 1983 (hazard identification; exposure assessment; dose-response assessment; and risk characterization). Exposure assessment focuses on hamburgers, cooked a range of temperatures from rare to well done, the latter typical for fast food restaurants. Features of the model include predictive microbiology components that account for random stochastic growth and death of organisms in hamburger. For dose-response modeling, Shigella data from human feeding studies were used as a surrogate for E. coli O157:H7. Risks were calculated using a threshold model and an alternative nonthreshold model. The 95% probability intervals for risk of illness for product cooked to a given internal temperature spanned five orders of magnitude for these models. The existence of even a small threshold has a dramatic impact on the estimated risk.  相似文献   

15.
The Bogotá River receives untreated wastewater from the city of Bogotá and many other towns. Downstream from Bogotá, water from the river is used for irrigation of crops. Concentrations of indicator organisms in the river are high, which is consistent with fecal contamination. To investigate the probability of illness due to exposure to enteric pathogens from the river, specifically Salmonella, we took water samples from the Bogotá River at six sampling locations in an area where untreated water from the river is used for irrigation of lettuce, broccoli, and cabbage. Salmonella concentrations were quantified by direct isolation and qPCR. Concentrations differed, depending on the quantification technique used, ranging between 107.7 and 109.9 number of copies of gene invA per L and 105.3 and 108.4 CFU/L, for qPCR and direct isolation, respectively. A quantitative microbial risk assessment model that estimates the daily risk of illness with Salmonella resulting from consuming raw unwashed vegetables irrigated with water from the Bogotá River was constructed using the Salmonella concentration data. The daily probability of illness from eating raw unwashed vegetables ranged between 0.62 and 0.85, 0.64 and 0.86, and 0.64 and 0.85 based on concentrations estimated by qPCR (0.47–0.85, 0.47–0.86, and 0.41–0.85 based on concentrations estimated by direct isolation) for lettuce, cabbage, and broccoli, respectively, which are all above the commonly propounded benchmark of 10?4 per year. Results obtained in this study highlight the necessity for appropriate wastewater treatment in the region, and emphasize the importance of postharvest practices, such as washing, disinfecting, and cooking.  相似文献   

16.
A simple analytic solution to the dynamic version of Haber's law was derived, conditional on a specified toxic load exponent (n) and on exponential decline in environmental toxicant concentration. Such conditions are particularly relevant to assessing ecotoxicity risk posed (e.g., to juvenile salmonids) by agricultural organophosphate (OP) pesticides that are subject to degradation and/or dissipation. A dynamic Haber's law model was fit to previously published detailed data on lethality for two aquatic species induced by six agricultural OP pesticides, and more crude fits were obtained to less detailed data on five other OP and on two non‐OP pesticides, indicating that for lethality, a range of 0.5 ≤ n ≤ 1.5 may be typical for OP pesticides. The AgDRIFT® stream deposition model was next used to establish that first‐order or exponential loss, with dilution half‐times on the order of ≤0.01 days, pertains approximately to pesticide residues in streams that arise after aerial application of agricultural pesticides 100 feet upwind. The analytic model was then applied to demonstrate that pesticide concentrations deposited in downwind streams following an aerial application are effectively diluted by about 50‐ to 300‐fold from their initial concentration. Riparian ecotoxicity risk assessment models that ignore this effective dilution, and base pesticide‐specific estimates of reduced survival on the initial concentrations, are therefore unrealistically conservative.  相似文献   

17.
To address the risk posed to human health by the consumption of VTEC O157 within contaminated pork, lamb, and beef products within Great Britain, a quantitative risk assessment model has been developed. This model aims to simulate the prevalence and amount of VTEC O157 in different meat products at consumption within a single model framework by adapting previously developed models. The model is stochastic in nature, enabling both variability (natural variation between animals, carcasses, products) and uncertainty (lack of knowledge) about the input parameters to be modeled. Based on the model assumptions and data, it is concluded that the prevalence of VTEC O157 in meat products (joints and mince) at consumption is low (i.e., <0.04%). Beef products, particularly beef burgers, present the highest estimated risk with an estimated eight out of 100,000 servings on average resulting in human infection with VTEC O157.  相似文献   

18.
This article reports a quantitative microbial risk assessment of the risk of Giardia and Cryptosporidium in very small private water supplies. Both pathogens have been implicated in causing outbreaks of waterborne disease associated with such supplies, though the risk of endemic disease is not known. For exposure assessments, we used existing data to derive regression equations describing the relationships between the concentration of these pathogens and Escherichia coli in private water supplies. Pathogen concentrations were then estimated using national surveillance data of E. coli in private water supplies in England and France. The estimated risk of infection was very high with the median annual risk being of the order of 25–28% for Cryptosporidium and 0.4% to 0.7% for Giardia, though, in the poorer quality supplies the risk could be much higher. These risks are substantially greater than for public water supplies and well above the risk considered tolerable. The observation that observed infection rates are generally much lower may indicate increased immunity in people regularly consuming water from private supplies. However, this increased immunity is presumed to derive from increased disease risk in young children, the group most at risk from severe disease.  相似文献   

19.
Dairies within the United Kingdom are classified into two groups, namely, off-farm and on-farm dairies (the latter often being small scale). We propose a model for the probability of milk sold as pasteurized reaching the point of retail contaminated with Vero-cytotoxigenic Escherichia coli (VTEC) O157 from each of these two pathways. We evaluate qualitatively the exposures inherent in each, and compare and contrast the two situations. The model framework is generic, in that it can in principle be used, with the relevant data modifications, to provide a qualitative assessment of the likely exposure from milk sold as pasteurized to any potentially milk-borne pathogenic organism. Furthermore, the methodological approaches presented are widely applicable in the microbial risk assessment field. The specific example presented will be of particular interest to the UK dairy and public health communities: we conclude that the exposure potential per liter consumed from milk processed in off-farm dairies is negligible, whereas the exposure potential per liter consumed from milk processed on-farm is low, but not sufficiently small to be regarded as negligible. We also identify areas of data sparsity, which need to be addressed for quantitative risk assessment to proceed, and highlight the critical points in the pasteurized milk production chain, which, in the event of a breakdown, have the potential to increase the risk to the consumer.  相似文献   

20.
Elizabethkingia spp. are common environmental pathogens responsible for infections in more vulnerable populations. Although the exposure routes of concern are not well understood, some hospital-associated outbreaks have indicated possible waterborne transmission. In order to facilitate quantitative microbial risk assessment (QMRA) for Elizabethkingia spp., this study fit dose–response models to frog and mice datasets that evaluated intramuscular and intraperitoneal exposure to Elizabethkingia spp. The frog datasets could be pooled, and the exact beta-Poisson model was the best fitting model with optimized parameters α  = 0.52 and β = 86,351. Using the exact beta-Poisson model, the dose of Elizabethkingia miricola resulting in a 50% morbidity response (LD50) was estimated to be approximately 237,000 CFU. The model developed herein was used to estimate the probability of infection for a hospital patient under a modeled exposure scenario involving a contaminated medical device and reported Elizabethkingia spp. concentrations isolated from hospital sinks after an outbreak. The median exposure dose was approximately 3 CFU/insertion event, and the corresponding median risk of infection was 3.4E-05. The median risk estimated in this case study was lower than the 3% attack rate observed in a previous outbreak, however, there are noted gaps pertaining to the possible concentrations of Elizabethkingia spp. in tap water and the most likely exposure routes. This is the first dose–response model developed for Elizabethkingia spp. thus enabling future risk assessments to help determine levels of risk and potential effective risk management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号