首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The United Nations Office for Disaster Risk Reduction reported that the 2011 natural disasters, including the earthquake and tsunami that struck Japan, resulted in $366 billion in direct damages and 29,782 fatalities worldwide. Storms and floods accounted for up to 70% of the 302 natural disasters worldwide in 2011, with earthquakes producing the greatest number of fatalities. Average annual losses in the United States amount to about $55 billion. Enhancing community and system resilience could lead to massive savings through risk reduction and expeditious recovery. The rational management of such reduction and recovery is facilitated by an appropriate definition of resilience and associated metrics. In this article, a resilience definition is provided that meets a set of requirements with clear relationships to the metrics of the relevant abstract notions of reliability and risk. Those metrics also meet logically consistent requirements drawn from measure theory, and provide a sound basis for the development of effective decision‐making tools for multihazard environments. Improving the resiliency of a system to meet target levels requires the examination of system enhancement alternatives in economic terms, within a decision‐making framework. Relevant decision analysis methods would typically require the examination of resilience based on its valuation by society at large. The article provides methods for valuation and benefit‐cost analysis based on concepts from risk analysis and management.  相似文献   

2.
Coastal cities around the world have experienced large costs from major flooding events in recent years. Climate change is predicted to bring an increased likelihood of flooding due to sea level rise and more frequent severe storms. In order to plan future development and adaptation, cities must know the magnitude of losses associated with these events, and how they can be reduced. Often losses are calculated from insurance claims or surveying flood victims. However, this largely neglects the loss due to the disruption of economic activity. We use a forward‐looking dynamic computable general equilibrium model to study how a local economy responds to a flood, focusing on the subsequent recovery/reconstruction. Initial damage is modeled as a shock to the capital stock and recovery requires rebuilding that stock. We apply the model to Vancouver, British Columbia by considering a flood scenario causing total capital damage of $14.6 billion spread across five municipalities. GDP loss relative to a no‐flood scenario is relatively long‐lasting. It is 2.0% ($2.2 billion) in the first year after the flood, 1.7% ($1.9 billion) in the second year, and 1.2% ($1.4 billion) in the fifth year.  相似文献   

3.
《Risk analysis》2018,38(6):1306-1318
This article analyzes the role of dynamic economic resilience in relation to recovery from disasters in general and illustrates its potential to reduce disaster losses in a case study of the Wenchuan earthquake of 2008. We first offer operational definitions of the concept linked to policies to promote increased levels and speed of investment in repair and reconstruction to implement this resilience. We then develop a dynamic computable general equilibrium (CGE) model that incorporates major features of investment and traces the time‐path of the economy as it recovers with and without dynamic economic resilience. The results indicate that resilience strategies could have significantly reduced GDP losses from the Wenchuan earthquake by 47.4% during 2008–2011 by accelerating the pace of recovery and could have further reduced losses slightly by shortening the recovery by one year. The results can be generalized to conclude that shortening the recovery period is not nearly as effective as increasing reconstruction investment levels and steepening the time‐path of recovery. This is an important distinction that should be made in the typically vague and singular reference to increasing the speed of recovery in many definitions of dynamic resilience.  相似文献   

4.
This article proposes a new modeling framework to investigate the consequences of natural disasters and the following reconstruction phase. Based on input-output tables, its originalities are (1) the taking into account of sector production capacities and of both forward and backward propagations within the economic system; and (2) the introduction of adaptive behaviors. The model is used to simulate the response of the economy of Louisiana to the landfall of Katrina. The model is found consistent with available data, and provides two important insights. First, economic processes exacerbate direct losses, and total costs are estimated at $149 billion, for direct losses equal to $107 billion. When exploring the impacts of other possible disasters, it is found that total losses due to a disaster affecting Louisiana increase nonlinearly with respect to direct losses when the latter exceed $50 billion. When direct losses exceed $200 billion, for instance, total losses are twice as large as direct losses. For risk management, therefore, direct losses are insufficient measures of disaster consequences. Second, positive and negative backward propagation mechanisms are essential for the assessment of disaster consequences, and the taking into account of production capacities is necessary to avoid overestimating the positive effects of reconstruction. A systematic sensitivity analysis shows that, among all parameters, the overproduction capacity in the construction sector and the adaptation characteristic time are the most important.  相似文献   

5.
Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input‐output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as‐planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health‐care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics.  相似文献   

6.
In this paper, we demonstrate how public opinion surveys can be designed to collect information pertinent to computational behavior modeling, and we present the results of a public opinion and behavior survey conducted during the 2009–2010 H1N1 influenza pandemic. The results are used to parameterize the Health Belief Model of individual health‐protective decision making. Survey subjects were asked questions about their perceptions of the then‐circulating influenza and attitudes towards two personal protective behaviors: vaccination and avoidance of crowds. We empirically address two important issues in applying the Health Belief Model of behavior to computational infectious disease simulation: (1) the factors dynamically influencing the states of the Health Belief Model variables and (2) the appropriateness of the Health Belief Model in describing self‐protective behavior in the context of pandemic influenza.  相似文献   

7.
The United States’ National Flood Insurance Program (NFIP) has accumulated over $20 billion in debt to the US Treasury since 2005, partly due to discounted premiums on homes in flood-prone areas. To address this issue, FEMA introduced Risk Rating 2.0 in October 2021, which is able to assess and charge more accurate and equitable rates to homeowners. However, rates must be continually updated to account for increasing flood damage caused by sea level rise and more intense hurricanes due to climate change. This study proposes a strategy to adopt updated premium rates that account for climate change effects and address affordability and risk mitigation issues with a means-tested voucher program. The strategy is tested in a coastal community, Ortley Beach, NJ, by projecting its future flood risk under sea level rise and storm intensification. Compared with using static rates for all the properties in Ortley Beach, the proposed strategy is shown to reduce the NFIP's potential losses to the community from 2020 to 2050 by half (from $4.6 million to $2.3 million), improve the community's flood resistance, and address affordability concerns. Sensitivity analysis of varying incomes, loan interest rates, and conditions for a voucher indicates that the strategy is feasible and effective under a wide range of scenarios. Thus, the proposed strategy can be applied to various communities along the US coastline as an effective way of updating risk-based premiums while addressing affordability and resilience concerns.  相似文献   

8.
The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models to study the effectiveness of nationwide fire protection investment in reducing economic and human losses. The regression between investment and loss vulnerability shows high R2 values (≈0.93). This article also contributes to the literature by modeling strategic (national‐level or state‐level) resource allocation (RA) for fire protection with equity‐efficiency trade‐off considerations, while existing literature focuses on operational‐level RA. This model and its numerical analyses provide techniques and insights to aid the strategic decision‐making process. The results from this model are used to calculate fire risk scores for various geographic regions, which can be used as an indicator of fire risk. A case study of federal fire grant allocation is used to validate and show the utility of the optimal RA model. The results also identify potential underinvestment and overinvestment in fire protection in certain regions. This article presents scenarios in which the model presented outperforms the existing RA scheme, when compared in terms of the correlation of resources allocated with actual number of fire incidents. This article provides some novel insights to policymakers and analysts in fire protection and safety that would help in mitigating economic costs and saving lives.  相似文献   

9.
Space weather phenomena have been studied in detail in the peer‐reviewed scientific literature. However, there has arguably been scant analysis of the potential socioeconomic impacts of space weather, despite a growing gray literature from different national studies, of varying degrees of methodological rigor. In this analysis, we therefore provide a general framework for assessing the potential socioeconomic impacts of critical infrastructure failure resulting from geomagnetic disturbances, applying it to the British high‐voltage electricity transmission network. Socioeconomic analysis of this threat has hitherto failed to address the general geophysical risk, asset vulnerability, and the network structure of critical infrastructure systems. We overcome this by using a three‐part method that includes (i) estimating the probability of intense magnetospheric substorms, (ii) exploring the vulnerability of electricity transmission assets to geomagnetically induced currents, and (iii) testing the socioeconomic impacts under different levels of space weather forecasting. This has required a multidisciplinary approach, providing a step toward the standardization of space weather risk assessment. We find that for a Carrington‐sized 1‐in‐100‐year event with no space weather forecasting capability, the gross domestic product loss to the United Kingdom could be as high as £15.9 billion, with this figure dropping to £2.9 billion based on current forecasting capability. However, with existing satellites nearing the end of their life, current forecasting capability will decrease in coming years. Therefore, if no further investment takes place, critical infrastructure will become more vulnerable to space weather. Additional investment could provide enhanced forecasting, reducing the economic loss for a Carrington‐sized 1‐in‐100‐year event to £0.9 billion.  相似文献   

10.
《Risk analysis》2018,38(3):442-453
Infections among health‐care personnel (HCP) occur as a result of providing care to patients with infectious diseases, but surveillance is limited to a few diseases. The objective of this study is to determine the annual number of influenza infections acquired by HCP as a result of occupational exposures to influenza patients in hospitals and emergency departments (EDs) in the United States. A risk analysis approach was taken. A compartmental model was used to estimate the influenza dose received in a single exposure, and a dose–response function applied to calculate the probability of infection. A three‐step algorithm tabulated the total number of influenza infections based on: the total number of occupational exposures (tabulated in previous work), the total number of HCP with occupational exposures, and the probability of infection in an occupational exposure. Estimated influenza infections were highly dependent upon the dose–response function. Given current compliance with infection control precautions, we estimated 151,300 and 34,150 influenza infections annually with two dose–response functions (annual incidence proportions of 9.3% and 2.1%, respectively). Greater reductions in infectious were achieved by full compliance with vaccination and IC precautions than with patient isolation. The burden of occupationally‐acquired influenza among HCP in hospitals and EDs in the United States is not trivial, and can be reduced through improved compliance with vaccination and preventive measures, including engineering and administrative controls.  相似文献   

11.
The U.S. Department of Agriculture (USDA) tests a subset of cattle slaughtered in the United States for bovine spongiform encephalitis (BSE). Knowing the origin of cattle (U.S. vs. Canadian) at testing could enable new testing or surveillance policies based on the origin of cattle testing positive. For example, if a Canadian cow tests positive for BSE, while no U.S. origin cattle do, the United States could subject Canadian cattle to more stringent testing. This article illustrates the application of a value-of-information (VOI) framework to quantify and compare potential economic costs to the United States of implementing tracking cattle origins to the costs of not doing so. The potential economic value of information from a tracking program is estimated to exceed its costs by more than five-fold if such information can reduce future losses in export and domestic markets and reduce future testing costs required to reassure or win back customers. Sensitivity analyses indicate that this conclusion is somewhat robust to many technical, scientific, and market uncertainties, including the current prevalence of BSE in the United States and/or Canada and the likely reactions of consumers to possible future discoveries of BSE in the United States and/or Canada. Indeed, the potential value of tracking information is great enough to justify locating and tracking Canadian cattle already in the United States when this can be done for a reasonable cost. If aggressive tracking and testing can win back lost exports, then the VOI of a tracking program may increase to over half a billion dollars per year.  相似文献   

12.
The objective of this study was to link arsenic exposure and influenza A (H1N1) infection‐induced respiratory effects to assess the impact of arsenic‐contaminated drinking water on exacerbation risk of A (H1N1)‐associated lung function. The homogeneous Poisson process was used to approximate the related processes between arsenic exposure and influenza‐associated lung function exacerbation risk. We found that (i) estimated arsenic‐induced forced expiratory volume in 1 second (FEV1) reducing rates ranged from 0.116 to 0.179 mL/μg for age 15–85 years, (ii) estimated arsenic‐induced A (H1N1) viral load increasing rate was 0.5 mL/μg, (iii) estimated A (H1N1) virus‐induced FEV1 reducing rate was 0.10 mL/logTCID50, and (iv) the relationship between arsenic exposure and A (H1N1)‐associated respiratory symptoms scores (RSS) can be described by a Hill model. Here we showed that maximum RSS at day 2 postinfection for Taiwan, West Bengal (India), and the United States were estimated to be in the severe range of 0.83, 0.89, and 0.81, respectively, indicating that chronic arsenic exposure and A (H1N1) infection together are most likely to pose potential exacerbations risk of lung function, although a 50% probability of lung function exacerbations risk induced by arsenic and influenza infection was within the mild and moderate ranges of RSS at day 1 and 2 postinfection. We concluded that avoidance of drinking arsenic‐containing water could significantly reduce influenza respiratory illness and that need will become increasingly urgent as the novel H1N1 pandemic influenza virus infects people worldwide.  相似文献   

13.
The COVID-19 pandemic has threatened public health and caused substantial economic loss to most countries worldwide. A multigroup susceptible–exposed–asymptomatic–infectious–hospitalized–recovered–dead (SEAIHRD) compartment model is first constructed to model the spread of the disease by dividing the population into three age groups: young (aged 0–19), prime (aged 20–64), and elderly (aged 65 and over). Then, we develop a free terminal time, partially fixed terminal state optimal control problem to minimize deaths and costs associated with hospitalization and the implementation of different control strategies. And the optimal strategies are derived under different assumptions about medical resources and vaccination. Specifically, we explore optimal control strategies for reaching herd immunity in the COVID-19 outbreak in a free terminal time situation to evaluate the effect of nonpharmaceutical interventions (NPIs) and vaccination as control measures. The transmission rate of SARS-CoV-2 is calibrated by using real data in the United States at the early stage of the epidemic. Through numerical simulation, we conclude that the outbreak of COVID-19 can be contained by implementing appropriate control of the prime age population and relatively strict control measures for young and elderly populations. Within a specific period, strict control measures should be implemented before the vaccine is marketed.  相似文献   

14.
Lynn Hempel 《Risk analysis》2011,31(7):1107-1119
We investigate the relationship between exposure to Hurricanes Katrina and/or Rita and mental health resilience by vulnerability status, with particular focus on the mental health outcomes of single mothers versus the general public. We advance a measurable notion of mental health resilience to disaster events. We also calculate the economic costs of poor mental health days added by natural disaster exposure. Negative binomial analyses show that hurricane exposure increases the expected count of poor mental health days for all persons by 18.7% (95% confidence interval [CI], 7.44–31.14%), and by 71.88% (95% CI, 39.48–211.82%) for single females with children. Monthly time‐series show that single mothers have lower event resilience, experiencing higher added mental stress. Results also show that the count of poor mental health days is sensitive to hurricane intensity, increasing by a factor of 1.06 (95% CI, 1.02–1.10) for every billion (U.S.$) dollars of damage added for all exposed persons, and by a factor of 1.08 (95% CI, 1.03–1.14) for single mothers. We estimate that single mothers, as a group, suffered over $130 million in productivity loss from added postdisaster stress and disability. Results illustrate the measurability of mental health resilience as a two‐dimensional concept of resistance capacity and recovery time. Overall, we show that natural disasters regressively tax disadvantaged population strata.  相似文献   

15.
Contrasting effects have been identified in association of weather (temperature and humidity) and pollutant gases with COVID-19 infection, which could be derived from the influence of lockdowns and season change. The influence of pollutant gases and climate during the initial phases of the pandemic, before the closures and the change of season in the northern hemisphere, is unknown. Here, we used a spatial-temporal Bayesian zero-inflated-Poisson model to test for short-term associations of weather and pollutant gases with the relative risk of COVID-19 disease in China (first outbreak) and the countries with more cases during the initial pandemic (the United States, Spain and Italy), considering also the effects of season and lockdown. We found contrasting association between pollutant gases and COVID-19 risk in the United States, Italy, and Spain, while in China it was negatively associated (except for SO2). COVID-19 risk was positively associated with specific humidity in all countries, while temperature presented a negative effect. Our findings showed that short-term associations of air pollutants with COVID-19 infection vary strongly between countries, while generalized effects of temperature (negative) and humidity (positive) with COVID-19 was found. Our results show novel information about the influence of pollution and weather on the initial outbreaks, which contribute to unravel the mechanisms during the beginning of the pandemic.  相似文献   

16.
The history of polio vaccination in the United States spans 50 years and includes different phases of the disease, multiple vaccines, and a sustained significant commitment of resources. We estimated cost-effectiveness ratios and assessed the net benefits of polio vaccination applicable at various points in time from the societal perspective and we discounted these back to appropriate points in time. We reconstructed vaccine price data from available sources and used these to retrospectively estimate the total costs of the U.S. historical polio vaccination strategies (all costs reported in year 2002 dollars). We estimate that the United States invested approximately US dollars 35 billion (1955 net present value, discount rate of 3%) in polio vaccines between 1955 and 2005 and will invest approximately US dollars 1.4 billion (1955 net present value, or US dollars 6.3 billion in 2006 net present value) between 2006 and 2015 assuming a policy of continued use of inactivated poliovirus vaccine (IPV) for routine vaccination. The historical and future investments translate into over 1.7 billion vaccinations that prevent approximately 1.1 million cases of paralytic polio and over 160,000 deaths (1955 net present values of approximately 480,000 cases and 73,000 deaths). Due to treatment cost savings, the investment implies net benefits of approximately US dollars 180 billion (1955 net present value), even without incorporating the intangible costs of suffering and death and of averted fear. Retrospectively, the U.S. investment in polio vaccination represents a highly valuable, cost-saving public health program. Observed changes in the cost-effectiveness ratio estimates over time suggest the need for living economic models for interventions that appropriately change with time. This article also demonstrates that estimates of cost-effectiveness ratios at any single time point may fail to adequately consider the context of the investment made to date and the importance of population and other dynamics, and shows the importance of dynamic modeling.  相似文献   

17.
Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario‐based methods to measure economic sensitivity to sudden‐onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management.  相似文献   

18.
《Risk analysis》2018,38(4):804-825
Economic consequence analysis is one of many inputs to terrorism contingency planning. Computable general equilibrium (CGE) models are being used more frequently in these analyses, in part because of their capacity to accommodate high levels of event‐specific detail. In modeling the potential economic effects of a hypothetical terrorist event, two broad sets of shocks are required: (1) physical impacts on observable variables (e.g., asset damage); (2) behavioral impacts on unobservable variables (e.g., investor uncertainty). Assembling shocks describing the physical impacts of a terrorist incident is relatively straightforward, since estimates are either readily available or plausibly inferred. However, assembling shocks describing behavioral impacts is more difficult. Values for behavioral variables (e.g., required rates of return) are typically inferred or estimated by indirect means. Generally, this has been achieved via reference to extraneous literature or ex ante surveys. This article explores a new method. We elucidate the magnitude of CGE‐relevant structural shifts implicit in econometric evidence on terrorist incidents, with a view to informing future ex ante event assessments. Ex post econometric studies of terrorism by Blomberg et al . yield macro econometric equations that describe the response of observable economic variables (e.g., GDP growth) to terrorist incidents. We use these equations to determine estimates for relevant (unobservable) structural and policy variables impacted by terrorist incidents, using a CGE model of the United States. This allows us to: (i) compare values for these shifts with input assumptions in earlier ex ante CGE studies; and (ii) discuss how future ex ante studies can be informed by our analysis.  相似文献   

19.
Outbreaks of contagious diseases underscore the ever‐looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This article investigates the interdependent economic and productivity risks resulting from epidemic‐induced workforce absenteeism. In particular, we develop a dynamic input‐output model capable of generating sector‐disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the national capital region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR, the proposed methodology can be customized for other regions.  相似文献   

20.
Regional economies are highly dependent on electricity, thus making their power supply systems attractive terrorist targets. We estimate the largest category of economic losses from electricity outages-business interruption-in the context of a total blackout of electricity in Los Angeles. We advance the state of the art in the estimation of the two factors that strongly influence the losses: indirect effects and resilience. The results indicate that indirect effects in the context of general equilibrium analysis are moderate in size. The stronger factor, and one that pushes in the opposite direction, is resilience. Our analysis indicates that electricity customers have the ability to mute the potential shock to their business operations by as much as 86%. Moreover, market resilience lowers the losses, in part through the dampening of general equilibrium effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号