首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Risk analysis》2018,38(5):1052-1069
This study investigated whether, in the absence of chronic noncancer toxicity data, short‐term noncancer toxicity data can be used to predict chronic toxicity effect levels by focusing on the dose–response relationship instead of a critical effect. Data from National Toxicology Program (NTP) technical reports have been extracted and modeled using the Environmental Protection Agency's Benchmark Dose Software. Best‐fit, minimum benchmark dose (BMD), and benchmark dose lower limits (BMDLs) have been modeled for all NTP pathologist identified significant nonneoplastic lesions, final mean body weight, and mean organ weight of 41 chemicals tested by NTP between 2000 and 2012. Models were then developed at the chemical level using orthogonal regression techniques to predict chronic (two years) noncancer health effect levels using the results of the short‐term (three months) toxicity data. The findings indicate that short‐term animal studies may reasonably provide a quantitative estimate of a chronic BMD or BMDL. This can allow for faster development of human health toxicity values for risk assessment for chemicals that lack chronic toxicity data.  相似文献   

2.
In order to determine the threshold amount of alcohol consumption for blood pressure, we calculated the benchmark dose (BMD) of alcohol consumption and its 95% lower confidence interval (BMDL) in Japanese workers. The subjects consisted of 4,383 males and 387 females in a Japanese steel company. The target variables were systolic, diastolic, and mean arterial pressures. The effects of other potential covariates such as age and body mass index were adjusted by including these covariates in the multiple linear regression models. In male workers, BMD/BMDL for alcohol consumption (g/week) at which the probability of an adverse response was estimated to increase by 5% relative to no alcohol consumption, were 396/315 (systolic blood pressure), 321/265 (diastolic blood pressure), and 326/269 (mean arterial pressures). These values were based on significant regression coefficients of alcohol consumption. In female workers, BMD/BMDL for alcohol consumption based on insignificant regression coefficients were 693/134 (systolic blood pressure), 199/90 (diastolic blood pressure), and 267/77 (mean arterial pressure). Therefore, BMDs/BMDLs in males were more informative than those in females as there was no significant relationship between alcohol and blood pressure in females. The threshold amount of alcohol consumption determined in this study provides valuable information for preventing alcohol-induced hypertension.  相似文献   

3.
The benchmark dose (BMD) is defined as the dose that corresponds to a specific change in an adverse response compared to the response in unexposed subjects, and the lower 95% confidence limit is termed the benchmark dose level (BMDL). In this study, the threshold of daily ethanol intake affecting blood pressure was calculated by both the BMD approach and multiple logistic regression analysis to clarify the relation between the BMDL and no-observed-adverse-effect level (NOAEL). Systolic and diastolic blood pressures (SBP and DBP) and daily ethanol intake were explored in 1,100 Japanese salesmen. The SBP and DBP were positively related to daily ethanol intake (p < 0.001) when adjusting for possible confounders such as age, body mass index, and smoking status. The adjusted risk for hypertension (SBP >or= 140 mmHg or DBP >or= 90 mmHg) increased significantly when daily ethanol intake exceeded 60 g/day, and the categorical dose of interest was 60.1-90 g/day. The BMDL and BMD of ethanol intake for increased SBP and DBP were estimated to be approximately 60 and 75 g/day, respectively. These findings suggest that the BMDL and BMD correspond to the NOAEL and lowest-observed-adverse-effect level, respectively, if the sample number of clinical data is large enough to confirm the dose-response association.  相似文献   

4.
In this review, recent methodological developments for the benchmark dose (BMD) methodology are summarized. Specifically, we introduce the advances for the main steps in BMD derivation: selecting the procedure for defining a BMD from a predefined benchmark response (BMR), setting a BMR, selecting a dose–response model, and estimating the corresponding BMD lower limit (BMDL). Although the last decade has shown major progress in the development of BMD methodology, there is still room for improvement. Remaining challenges are the implementation of new statistical methods in user‐friendly software and the lack of consensus about how to derive the BMDL.  相似文献   

5.
The benchmark dose (BMD) is an exposure level that would induce a small risk increase (BMR level) above the background. The BMD approach to deriving a reference dose for risk assessment of noncancer effects is advantageous in that the estimate of BMD is not restricted to experimental doses and utilizes most available dose-response information. To quantify statistical uncertainty of a BMD estimate, we often calculate and report its lower confidence limit (i.e., BMDL), and may even consider it as a more conservative alternative to BMD itself. Computation of BMDL may involve normal confidence limits to BMD in conjunction with the delta method. Therefore, factors, such as small sample size and nonlinearity in model parameters, can affect the performance of the delta method BMDL, and alternative methods are useful. In this article, we propose a bootstrap method to estimate BMDL utilizing a scheme that consists of a resampling of residuals after model fitting and a one-step formula for parameter estimation. We illustrate the method with clustered binary data from developmental toxicity experiments. Our analysis shows that with moderately elevated dose-response data, the distribution of BMD estimator tends to be left-skewed and bootstrap BMDL s are smaller than the delta method BMDL s on average, hence quantifying risk more conservatively. Statistically, the bootstrap BMDL quantifies the uncertainty of the true BMD more honestly than the delta method BMDL as its coverage probability is closer to the nominal level than that of delta method BMDL. We find that BMD and BMDL estimates are generally insensitive to model choices provided that the models fit the data comparably well near the region of BMD. Our analysis also suggests that, in the presence of a significant and moderately strong dose-response relationship, the developmental toxicity experiments under the standard protocol support dose-response assessment at 5% BMR for BMD and 95% confidence level for BMDL.  相似文献   

6.
Prior research focusing on risk perceptions has led to the observation that well‐educated and politically conservative white males tend to systematically perceive lower levels of risk from a wide range of hazards when compared to other members of society (e.g., white women, nonwhite women and men). While this “white male effect (WME)” is quite striking given that many policymakers fall into this group, a byproduct of this finding is that it deflects attention from the heterogeneity, in terms of people's concerns about risks, that exists in African‐American and other minority communities. The research reported here set out to explore this heterogeneity by asking a simple question: Can a phenomenon similar to the WME be found in the African‐American community? It can, and its implications for research and practice in risk management are discussed.  相似文献   

7.
The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose‐response models. Current approaches do not explicitly address model uncertainty, and there is an existing need to more fully inform health risk assessors in this regard. In this study, a Bayesian model averaging (BMA) BMD estimation method taking model uncertainty into account is proposed as an alternative to current BMD estimation approaches for continuous data. Using the “hybrid” method proposed by Crump, two strategies of BMA, including both “maximum likelihood estimation based” and “Markov Chain Monte Carlo based” methods, are first applied as a demonstration to calculate model averaged BMD estimates from real continuous dose‐response data. The outcomes from the example data sets examined suggest that the BMA BMD estimates have higher reliability than the estimates from the individual models with highest posterior weight in terms of higher BMDL and smaller 90th percentile intervals. In addition, a simulation study is performed to evaluate the accuracy of the BMA BMD estimator. The results from the simulation study recommend that the BMA BMD estimates have smaller bias than the BMDs selected using other criteria. To further validate the BMA method, some technical issues, including the selection of models and the use of bootstrap methods for BMDL derivation, need further investigation over a more extensive, representative set of dose‐response data.  相似文献   

8.
Izadi H  Grundy JE  Bose R 《Risk analysis》2012,32(5):830-835
Repeated-dose studies received by the New Substances Assessment and Control Bureau (NSACB) of Health Canada are used to provide hazard information toward risk calculation. These studies provide a point of departure (POD), traditionally the NOAEL or LOAEL, which is used to extrapolate the quantity of substance above which adverse effects can be expected in humans. This project explored the use of benchmark dose (BMD) modeling as an alternative to this approach for studies with few dose groups. Continuous data from oral repeated-dose studies for chemicals previously assessed by NSACB were reanalyzed using U.S. EPA benchmark dose software (BMDS) to determine the BMD and BMD 95% lower confidence limit (BMDL(05) ) for each endpoint critical to NOAEL or LOAEL determination for each chemical. Endpoint-specific benchmark dose-response levels , indicative of adversity, were consistently applied. An overall BMD and BMDL(05) were calculated for each chemical using the geometric mean. The POD obtained from benchmark analysis was then compared with the traditional toxicity thresholds originally used for risk assessment. The BMD and BMDL(05) generally were higher than the NOAEL, but lower than the LOAEL. BMDL(05) was generally constant at 57% of the BMD. Benchmark provided a clear advantage in health risk assessment when a LOAEL was the only POD identified, or when dose groups were widely distributed. Although the benchmark method cannot always be applied, in the selected studies with few dose groups it provided a more accurate estimate of the real no-adverse-effect level of a substance.  相似文献   

9.
《Risk analysis》2018,38(8):1738-1757
We developed a risk assessment of human salmonellosis associated with consumption of alfalfa sprouts in the United States to evaluate the public health impact of applying treatments to seeds (0–5‐log10 reduction in Salmonella ) and testing spent irrigation water (SIW) during production. The risk model considered variability and uncertainty in Salmonella contamination in seeds, Salmonella growth and spread during sprout production, sprout consumption, and Salmonella dose response. Based on an estimated prevalence of 2.35% for 6.8 kg seed batches and without interventions, the model predicted 76,600 (95% confidence interval (CI) 15,400 – 248,000) cases/year. Risk reduction (by 5 ‐ to 7‐fold) predicted from a 1‐log10 seed treatment alone was comparable to SIW testing alone, and each additional 1‐log10 seed treatment was predicted to provide a greater risk reduction than SIW testing. A 3‐log10 or a 5‐log10 seed treatment reduced the predicted cases/year to 139 (95% CI 33 – 448) or 1.4 (95% CI <1 – 4.5), respectively. Combined with SIW testing, a 3‐log10 or 5‐log10 seed treatment reduced the cases/year to 45 (95% CI 10–146) or <1 (95% CI <1 – 1.5), respectively. If the SIW coverage was less complete (i.e., less representative), a smaller risk reduction was predicted, e.g., a combined 3‐log10 seed treatment and SIW testing with 20% coverage resulted in an estimated 92 (95% CI 22 – 298) cases/year. Analysis of alternative scenarios using different assumptions for key model inputs showed that the predicted relative risk reductions are robust. This risk assessment provides a comprehensive approach for evaluating the public health impact of various interventions in a sprout production system.  相似文献   

10.
Calculation of Benchmark Doses from Continuous Data   总被引:20,自引:0,他引:20  
A benchmark dose (BMD) is the dose of a substance that corresponds to a prescribed increase in the response (called the benchmark response or BMR) of a health effect. A statistical lower bound on the benchmark dose (BMDL) has been proposed as a replacement for the no-observed-adverse-effect-level (NOAEL) in setting acceptable human exposure levels. A method is developed in this paper for calculating BMDs and BMDLs from continuous data in a manner that is consistent with those calculated from quantal data. The method involves defining an abnormal response, either directly by specifying a cutoff x0 that separates continuous responses into normal and abnormal categories, or indirectly by specifying the proportion P0 of abnormal responses expected among unexposed subjects. The method does not involve actually dichotomizing individual continuous responses into quantal responses, and in certain cases can be applied to continuous data in summarized form (e.g., means and standard deviations of continuous responses among subjects in discrete dose groups). In addition to specifying the BMR and either x0 or P0 , the method requires specification of the distribution of continuous responses, including specification of the dose-response θ(d) for a measure of central tendency. A method is illustrated for selecting θ(d) to make the probability of an abnormal response any desired dose-response function. This enables the same dose-response model (Weibull, log-logistic, etc.) to be used for the probability of an abnormal response, regardless of whether the underlying data are continuous or quantal. Whenever the continuous responses are normally distributed with standard deviation σ (independent of dose), the method is equivalent to defining the BMD as the dose corresponding to a prescribed change in the mean response relative to σ.  相似文献   

11.
《Risk analysis》2018,38(5):1036-1051
Risks of allergic contact dermatitis (ACD) from consumer products intended for extended (nonpiercing) dermal contact are regulated by E.U. Directive EN 1811 that limits released Ni to a weekly equivalent dermal load of ≤0.5 μg/cm2. Similar approaches for thousands of known organic sensitizers are hampered by inability to quantify respective ACD‐elicitation risk levels. To help address this gap, normalized values of cumulative risk for eliciting a positive (“≥+”) clinical patch test response reported in 12 studies for a total of n = 625 Ni‐sensitized patients were modeled in relation to observed ACD‐eliciting Ni loads, yielding an approximate lognormal (LN) distribution with a geometric mean and standard deviation of GMNi = 15 μg/cm2 and GSDNi = 8.0, respectively. Such data for five sensitizers (including formaldehyde and 2‐hydroxyethyl methacrylate) were also ∼LN distributed, but with a common GSD value equal to GSDNi and with heterogeneous sensitizer‐specific GM values each defining a respective ACD‐eliciting potency GMNi/GM relative to Ni. Such potencies were also estimated for nine (meth)acrylates by applying this general LN ACD‐elicitation risk model to respective sets of fewer data. ACD‐elicitation risk patterns observed for Cr(VI) (n = 417) and Cr(III) (n = 78) were fit to mixed‐LN models in which ∼30% and ∼40% of the most sensitive responders, respectively, were estimated to exhibit a LN response also governed by GSDNi. The observed common LN‐response shape parameter GSDNi may reflect a common underlying ACD mechanism and suggests a common interim approach to quantitative ACD‐elicitation risk assessment based on available clinical data.  相似文献   

12.
Universal need for, or reactions to, risk communications should not be assumed; potential differences across demographic groups in environmental risk beliefs, attitudes, and behaviors could affect risk levels or opportunities for risk reduction. This article reports relevant findings from a survey experiment involving 1,100 potential jurors in Philadelphia concerning public responses to outdoor air pollution and air quality information. Flynn et al. (1994) and Finucane et al. (2000) found significant differences in risk ratings for multiple hazards, and in generic risk beliefs, between white men (or a subset) and all others (white women, nonwhite men, and nonwhite women). This study examined whether white men had significantly different responses to air pollution and air pollution information. An opportunity sample of volunteers from those awaiting potential jury duty in city courts (matching census estimates for white versus nonwhite proportions, but more female than the city's adult population and more likely to have children) filled out questionnaires distributed quasi-randomly. On most measures there were no statistically significant differences among white men (N = 192), white women (N = 269), nonwhite men (N = 165), and nonwhite women (N = 272). Nonwhites overall (particularly women) reported more concern about and sensitivity to air pollution than whites, and were more concerned by (even overly sensitive to) air pollution information provided as part of the experiment. Nonwhites also were more likely (within-gender comparisons) to report being active outdoors for at least four hours a day, a measure of potential exposure to air pollution, and to report intentions to reduce such outdoor activity after reading air pollution information. Differences between men and women were less frequent than between whites and nonwhites; the most distinctive group was nonwhite women, followed by white men. Flynn et al. (1994) and Finucane et al. (2000) found a far larger proportion of significant differences, with white men as most distinctive, probably due to use of different measures, study design, and population samples. However, all three studies broadly confirm the existence of gender and race interactions in risk beliefs and attitudes (particularly for white men and nonwhite women) that deserve more attention from researchers.  相似文献   

13.
The objective of this study was to link arsenic exposure and influenza A (H1N1) infection‐induced respiratory effects to assess the impact of arsenic‐contaminated drinking water on exacerbation risk of A (H1N1)‐associated lung function. The homogeneous Poisson process was used to approximate the related processes between arsenic exposure and influenza‐associated lung function exacerbation risk. We found that (i) estimated arsenic‐induced forced expiratory volume in 1 second (FEV1) reducing rates ranged from 0.116 to 0.179 mL/μg for age 15–85 years, (ii) estimated arsenic‐induced A (H1N1) viral load increasing rate was 0.5 mL/μg, (iii) estimated A (H1N1) virus‐induced FEV1 reducing rate was 0.10 mL/logTCID50, and (iv) the relationship between arsenic exposure and A (H1N1)‐associated respiratory symptoms scores (RSS) can be described by a Hill model. Here we showed that maximum RSS at day 2 postinfection for Taiwan, West Bengal (India), and the United States were estimated to be in the severe range of 0.83, 0.89, and 0.81, respectively, indicating that chronic arsenic exposure and A (H1N1) infection together are most likely to pose potential exacerbations risk of lung function, although a 50% probability of lung function exacerbations risk induced by arsenic and influenza infection was within the mild and moderate ranges of RSS at day 1 and 2 postinfection. We concluded that avoidance of drinking arsenic‐containing water could significantly reduce influenza respiratory illness and that need will become increasingly urgent as the novel H1N1 pandemic influenza virus infects people worldwide.  相似文献   

14.
Mitchell J. Small 《Risk analysis》2011,31(10):1561-1575
A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose‐response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose‐response models (logistic and quantal‐linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5–10%. The results demonstrate that dose selection for studies that subsequently inform dose‐response models can benefit from consideration of how these models will be fit, combined, and interpreted.  相似文献   

15.
16.
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano‐functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano‐functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo‐catalytic exterior paint (nano‐scale TiO2), antimicrobial food packaging (nano‐scale Ag), and particulate‐reducing diesel fuel additives (nano‐scale CeO2). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure‐ and risk‐ranking methods may be redefined on a quantitative basis.  相似文献   

17.
The neurotoxic effects of chemical agents are often investigated in controlled studies on rodents, with binary and continuous multiple endpoints routinely collected. One goal is to conduct quantitative risk assessment to determine safe dose levels. Yu and Catalano (2005) describe a method for quantitative risk assessment for bivariate continuous outcomes by extending a univariate method of percentile regression. The model is likelihood based and allows for separate dose‐response models for each outcome while accounting for the bivariate correlation. The approach to benchmark dose (BMD) estimation is analogous to that for quantal data without having to specify arbitrary cutoff values. In this article, we evaluate the behavior of the BMD relative to background rates, sample size, level of bivariate correlation, dose‐response trend, and distributional assumptions. Using simulations, we explore the effects of these factors on the resulting BMD and BMDL distributions. In addition, we illustrate our method with data from a neurotoxicity study of parathion exposure in rats.  相似文献   

18.
An important requisite for improving risk communication practice related to contentious environmental issues is having a better theoretical understanding of how risk perceptions function in real‐world social systems. Our study applied Scherer and Cho's social network contagion theory of risk perception (SNCTRP) to cormorant management (a contentious environmental management issue) in the Great Lakes Basin to: (1) assess contagion effects on cormorant‐related risk perceptions and individual factors believed to influence those perceptions and (2) explore the extent of social contagion in a full network (consisting of interactions between and among experts and laypeople) and three “isolated” models separating different types of interactions from the full network (i.e., expert‐to‐expert, layperson‐to‐layperson, and expert‐to‐layperson). We conducted interviews and administered questionnaires with experts (e.g., natural resource professionals) and laypeople (e.g., recreational and commercial anglers, business owners, bird enthusiasts) engaged in cormorant management in northern Lake Huron (n = 115). Our findings generally support the SNCTRP; however, the scope and scale of social contagion varied considerably based on the variables (e.g., individual risk perception factors), actors (i.e., experts or laypeople), and interactions of interest. Contagion effects were identified more frequently, and were stronger, in the models containing interactions between experts and laypeople than in those models containing only interactions among experts or laypeople.  相似文献   

19.
Lead is a recognized neurotoxicant, but estimating effects at the lowest measurable levels is difficult. An international pooled analysis of data from seven cohort studies reported an inverse and supra‐linear relationship between blood lead concentrations and IQ scores in children. The lack of a clear threshold presents a challenge to the identification of an acceptable level of exposure. The benchmark dose (BMD) is defined as the dose that leads to a specific known loss. As an alternative to elusive thresholds, the BMD is being used increasingly by regulatory authorities. Using the pooled data, this article presents BMD results and applies different statistical techniques in the analysis of multistudy data. The calculations showed only a limited variation between studies in the steepness of the dose‐response functions. BMD results were quite robust to modeling assumptions with the best fitting models yielding lower confidence limits (BMDLs) of about 0.1–1.0 μ g/dL for the dose leading to a loss of one IQ point. We conclude that current allowable blood lead concentrations need to be lowered and further prevention efforts are needed to protect children from lead toxicity.  相似文献   

20.
I introduce a model of undirected dyadic link formation which allows for assortative matching on observed agent characteristics (homophily) as well as unrestricted agent‐level heterogeneity in link surplus (degree heterogeneity). Like in fixed effects panel data analyses, the joint distribution of observed and unobserved agent‐level characteristics is left unrestricted. Two estimators for the (common) homophily parameter, β0, are developed and their properties studied under an asymptotic sequence involving a single network growing large. The first, tetrad logit (TL), estimator conditions on a sufficient statistic for the degree heterogeneity. The second, joint maximum likelihood (JML), estimator treats the degree heterogeneity {Ai0}i = 1N as additional (incidental) parameters to be estimated. The TL estimate is consistent under both sparse and dense graph sequences, whereas consistency of the JML estimate is shown only under dense graph sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号