首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many directional data such as wind directions can be collected extremely easily so that experiments typically yield a huge number of data points that are sequentially collected. To deal with such big data, the traditional nonparametric techniques rapidly require a lot of time to be computed and therefore become useless in practice if real time or online forecasts are expected. In this paper, we propose a recursive kernel density estimator for directional data which (i) can be updated extremely easily when a new set of observations is available and (ii) keeps asymptotically the nice features of the traditional kernel density estimator. Our methodology is based on Robbins–Monro stochastic approximations ideas. We show that our estimator outperforms the traditional techniques in terms of computational time while being extremely competitive in terms of efficiency with respect to its competitors in the sequential context considered here. We obtain expressions for its asymptotic bias and variance together with an almost sure convergence rate and an asymptotic normality result. Our technique is illustrated on a wind dataset collected in Spain. A Monte‐Carlo study confirms the nice properties of our recursive estimator with respect to its non‐recursive counterpart.  相似文献   

2.
We consider a variance estimation when a stratified single stage cluster sample is selected in the first phase and a stratified simple random element sample is selected in the second phase. We propose explicit formulas of (asymptotically), we propose explicit formulas of (asymptotically) unbiased variance estimators for the double expansion estimator and regression estimator. We perform a small simulation study to investigate the performance of the proposed variance estimators. In our simulation study, the proposed variance estimator showed better or comparable performance to the Jackknife variance estimator. We also extend the results to a two-phase sampling design in which a stratified pps with replacement cluster sample is selected in the first phase.  相似文献   

3.
In disease registries there can be a delay between death of asubject and the reporting of this death to the data analyst.If researchers use the Kaplan-Meier estimator and implicitlyassumed that subjects who have yet to have death reported arestill alive, i.e. are censored at the time of analysis, the Kaplan-Meierestimator is typically inconsistent. Assuming censoring is independentof failure, we provide a simple estimator that is consistentand asymptotically efficient. We also provide estimates of theasymptotic variance of our estimator and simulations that demonstratethe favorable performance of these estimators. Finally, we demonstrateour methods by analyzing AIDS survival data. This analysis underscoresthe pitfalls of not accounting for delay when estimating thesurvival distribution and suggests a significant reduction inbias by using our estimator.  相似文献   

4.
Abstract.  The Nelson–Aalen estimator is well known to be an asymptotically efficient estimator of the cumulative hazard function, see Andersen et al. ( Statistical models based on counting processes , Springer-Verlag, New York, 1993) among many others. In this paper, we show that the efficiency of the Nelson–Aalen estimator can be considerably improved by using more information in the estimation process than the traditional Nelson–Aalen estimator uses. While our approach results in a biased estimator, the variance improvement is substantial. By optimizing the balance between the bias loss and the variance improvement, we obtain results on the efficiency gain. Several examples for known failure time distributions are used to illustrate these ideas.  相似文献   

5.
The problem of estimating the width of a symmetric uniform distribution on the line together with the error variance, when data are measured with normal additive error, is considered. The main purpose is to analyse the maximum-likelihood (ML) estimator and to compare it with the moment-method estimator. It is shown that this two-parameter model is regular so that the ML estimator is asymptotically efficient. Necessary and sufficient conditions are given for the existence of the ML estimator. As numerical problems are known to frequently occur while computing the ML estimator in this model, useful suggestions for computing the ML estimator are also given.  相似文献   

6.
A difference-based variance estimator is proposed for nonparametric regression in complex surveys. By using a combined inference framework, the estimator is shown to be asymptotically normal and to converge to the true variance at a parametric rate. Simulation studies show that the proposed variance estimator works well for complex survey data and also reveals some finite sample properties of the estimator.  相似文献   

7.
Abstract. The problem of estimating an unknown density function has been widely studied. In this article, we present a convolution estimator for the density of the responses in a nonlinear heterogenous regression model. The rate of convergence for the mean square error of the convolution estimator is of order n ?1 under certain regularity conditions. This is faster than the rate for the kernel density method. We derive explicit expressions for the asymptotic variance and the bias of the new estimator, and further a data‐driven bandwidth selector is proposed. We conduct simulation experiments to check the finite sample properties, and the convolution estimator performs substantially better than the kernel density estimator for well‐behaved noise densities.  相似文献   

8.
ABSTRACT

This article is concerned with inference in the linear model with dyadic data. Dyadic data are indexed by pairs of “units;” for example, trade data between pairs of countries. Because of the potential for observations with a unit in common to be correlated, standard inference procedures may not perform as expected. We establish a range of conditions under which a t-statistic with the dyadic-robust variance estimator of Fafchamps and Gubert is asymptotically normal. Using our theoretical results as a guide, we perform a simulation exercise to study the validity of the normal approximation, as well as the performance of a novel finite-sample correction. We conclude with guidelines for applied researchers wishing to use the dyadic-robust estimator for inference.  相似文献   

9.
Summary. The paper considers a rectangular array asymptotic embedding for multistratum data sets, in which both the number of strata and the number of within-stratum replications increase, and at the same rate. It is shown that under this embedding the maximum likelihood estimator is consistent but not efficient owing to a non-zero mean in its asymptotic normal distribution. By using a projection operator on the score function, an adjusted maximum likelihood estimator can be obtained that is asymptotically unbiased and has a variance that attains the Cramér–Rao lower bound. The adjusted maximum likelihood estimator can be viewed as an approximation to the conditional maximum likelihood estimator.  相似文献   

10.
This paper considers linear and nonlinear regression with a response variable that is allowed to be “missing at random”. The only structural assumptions on the distribution of the variables are that the errors have mean zero and are independent of the covariates. The independence assumption is important. It enables us to construct an estimator for the response density that uses all the observed data, in contrast to the usual local smoothing techniques, and which therefore permits a faster rate of convergence. The idea is to write the response density as a convolution integral which can be estimated by an empirical version, with a weighted residual-based kernel estimator plugged in for the error density. For an appropriate class of regression functions, and a suitably chosen bandwidth, this estimator is consistent and converges with the optimal parametric rate n1/2. Moreover, the estimator is proved to be efficient (in the sense of Hájek and Le Cam) if an efficient estimator is used for the regression parameter.  相似文献   

11.
We consider the problem of estimating the proportion θ of true null hypotheses in a multiple testing context. The setup is classically modelled through a semiparametric mixture with two components: a uniform distribution on interval [0,1] with prior probability θ and a non‐parametric density f . We discuss asymptotic efficiency results and establish that two different cases occur whether f vanishes on a non‐empty interval or not. In the first case, we exhibit estimators converging at a parametric rate, compute the optimal asymptotic variance and conjecture that no estimator is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the second case, we prove that the quadratic risk of any estimator does not converge at a parametric rate. We illustrate those results on simulated data.  相似文献   

12.
In this study, we consider a robust estimation for zero-inflated Poisson autoregressive models using the minimum density power divergence estimator designed by Basu et al. [Robust and efficient estimation by minimising a density power divergence. Biometrika. 1998;85:549–559]. We show that under some regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. The performance of the estimator is evaluated through Monte Carlo simulations. A real data analysis using New South Wales crime data is also provided for illustration.  相似文献   

13.
The non-Gaussian maximum likelihood estimator is frequently used in GARCH models with the intention of capturing heavy-tailed returns. However, unless the parametric likelihood family contains the true likelihood, the estimator is inconsistent due to density misspecification. To correct this bias, we identify an unknown scale parameter ηf that is critical to the identification for consistency and propose a three-step quasi-maximum likelihood procedure with non-Gaussian likelihood functions. This novel approach is consistent and asymptotically normal under weak moment conditions. Moreover, it achieves better efficiency than the Gaussian alternative, particularly when the innovation error has heavy tails. We also summarize and compare the values of the scale parameter and the asymptotic efficiency for estimators based on different choices of likelihood functions with an increasing level of heaviness in the innovation tails. Numerical studies confirm the advantages of the proposed approach.  相似文献   

14.
This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented.  相似文献   

15.
We consider a non response-adjusted poststratified estimation when there exists a set of clear response homogeneity groups but the population distribution of that set is unknown, which is common in practice. We propose a partially calibrated poststratified estimator that is asymptotically unbiased and satisfies a calibration equation for the auxiliary variables of which the joint population distribution is known. We also provide a variance estimator of the proposed poststratified estimator. In a small simulation study, the proposed estimator performed better than or comparable to commonly used estimators.  相似文献   

16.
In this paper, we propose a new generalized regression estimator for the problem of estimating the population total using unequal probability sampling without replacement. A modified automated linearization approach is applied in order to transform the proposed estimator to estimate variance of population total. The variance and estimated value of the variance of the proposed estimator is investigated under a reverse framework assuming that the sampling fraction is negligible and there are equal response probabilities for all units. We prove that the proposed estimator is an asymptotically unbiased estimator and that it does not require a known or estimated response probability to function.  相似文献   

17.
We show that the mean-model parameter is always orthogonal to the error distribution in generalized linear models. Thus, the maximum likelihood estimator of the mean-model parameter will be asymptotically efficient regardless of whether the error distribution is known completely, known up to a finite vector of parameters, or left completely unspecified, in which case the likelihood is taken to be an appropriate semiparametric likelihood. Moreover, the maximum likelihood estimator of the mean-model parameter will be asymptotically independent of the maximum likelihood estimator of the error distribution. This generalizes some well-known results for the special cases of normal, gamma, and multinomial regression models, and, perhaps more interestingly, suggests that asymptotically efficient estimation and inferences can always be obtained if the error distribution is non parametrically estimated along with the mean. In contrast, estimation and inferences using misspecified error distributions or variance functions are generally not efficient.  相似文献   

18.
Suppose we observe an ergodic Markov chain on the real line, with a parametric model for the autoregression function, i.e. the conditional mean of the transition distribution. If one specifies, in addition, a parametric model for the conditional variance, one can define a simple estimator for the parameter, the maximum quasi-likelihood estimator. It is robust against misspecification of the conditional variance, but not efficient. We construct an estimator which is adaptive in the sense that it is efficient if the conditional variance is misspecified, and asymptotically as good as the maximum quasi-likelihood estimator if the conditional variance is correctly specified. The adaptive estimator is a weighted nonlinear least-squares estimator, with weights given by predictors for the conditional variance.  相似文献   

19.
Abstract. We investigate non‐parametric estimation of a monotone baseline hazard and a decreasing baseline density within the Cox model. Two estimators of a non‐decreasing baseline hazard function are proposed. We derive the non‐parametric maximum likelihood estimator and consider a Grenander type estimator, defined as the left‐hand slope of the greatest convex minorant of the Breslow estimator. We demonstrate that the two estimators are strongly consistent and asymptotically equivalent and derive their common limit distribution at a fixed point. Both estimators of a non‐increasing baseline hazard and their asymptotic properties are obtained in a similar manner. Furthermore, we introduce a Grenander type estimator for a non‐increasing baseline density, defined as the left‐hand slope of the least concave majorant of an estimator of the baseline cumulative distribution function, derived from the Breslow estimator. We show that this estimator is strongly consistent and derive its asymptotic distribution at a fixed point.  相似文献   

20.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号