首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper introduces a new difference-based Liu estimator β?Ldiff=([Xtilde]′[Xtilde]+I)?1([Xtilde]′[ytilde]+η β?diff) of the regression parameters β in the semiparametric regression model, y=Xβ+f+?. Difference-based estimator, β?diff=([Xtilde]′[Xtilde])?1[Xtilde]′[ytilde] and difference-based Liu estimator are analysed and compared with respect to mean-squared error (mse) criterion. Finally, the performance of the new estimator is evaluated for a real data set. Monte Carlo simulation is given to show the improvement in the scalar mse of the estimator.  相似文献   

2.
3.
In this paper, a generalized difference-based estimator is introduced for the vector parameter β in partially linear model when the errors are correlated. A generalized-difference-based almost unbiased two-parameter estimator is defined for the vector parameter β. Under the linear stochastic constraint r = Rβ + e, we introduce a new generalized-difference-based weighted mixed almost unbiased two-parameter estimator. The performance of this new estimator over the generalized-difference-based estimator and generalized- difference-based almost unbiased two-parameter estimator in terms of the MSEM criterion is investigated. The efficiency properties of the new estimator is illustrated by a simulation study. Finally, the performance of the new estimator is evaluated for a real dataset.  相似文献   

4.
In this paper, a generalized difference-based mixed Liu estimator in partially linear model is presented, when it is supposed that the regression parameter may be restricted to a subspace and compare the proposed estimators in the sense of matrix mean squared error criteria. Finally a simulation study is presented to show the performance of the estimators.  相似文献   

5.
Gülin Tabakan 《Statistics》2013,47(2):329-347
In this paper, we consider a commonly used partially linear model. We proposed a restricted difference-based ridge estimator for the vector of parameters β in a partially linear model with one smoothing term when additional linear restrictions on the parameter vector are assumed to hold. The ideas in the paper are illustrated in a real data set and in a Monte Carlo simulation study.  相似文献   

6.
Hu Yang 《Statistics》2013,47(6):759-766
In this paper, we introduce a stochastic restricted kd class estimator for the vector of parameters in a linear model when additional linear restrictions on the parameter vector are assumed to hold. The stochastic restricted kd class estimator is a generalization of the ordinary mixed estimator and the kd class estimator. We show that our new biased estimator is superior in the mean squared error matrix sense to the kd class estimator [S. Sakall?o?lu and S. Kaçiranlar, A new biased estimator based on ridge estimation, Statist. Papers 49 (2008), pp. 669–689] and the stochastic restricted Liu estimator [H. Yang and J.W. Xu, An alternative stochastic restricted Liu estimator in linear regression, Statist. Papers 50 (2009), pp. 639–647]. Finally, a numerical example is given to show the theoretical results.  相似文献   

7.
ABSTRACT

One of the problems with the Liu estimator is the appropriate value for the unknown biasing parameter d. In this article we consider the optimum value for d and give upper bound for the expected value of the estimator of this biasing parameter. We also derive the general expressions for the moments of the stochastic shrinkage parameters of the Liu estimator and the generalized Liu estimator. Numerical calculations are carried out to illustrate the behavior of the mean and variance of the biasing parameter. Also, a numerical example is given to illustrate the effect of the biasing parameter d, on the mean square error of the Liu estimator.  相似文献   

8.
In the presence of collinearity certain biased estimation procedures like ridge regression, generalized inverse estimator, principal component regression, Liu estimator, or improved ridge and Liu estimators are used to improve the ordinary least squares (OLS) estimates in the linear regression model. In this paper new biased estimator (Liu estimator), almost unbiased (improved) Liu estimator and their residuals will be analyzed and compared with OLS residuals in terms of mean-squared error.  相似文献   

9.
The maximum likelihood (ML) method is used to estimate the unknown Gamma regression (GR) coefficients. In the presence of multicollinearity, the variance of the ML method becomes overstated and the inference based on the ML method may not be trustworthy. To combat multicollinearity, the Liu estimator has been used. In this estimator, estimation of the Liu parameter d is an important problem. A few estimation methods are available in the literature for estimating such a parameter. This study has considered some of these methods and also proposed some new methods for estimation of the d. The Monte Carlo simulation study has been conducted to assess the performance of the proposed methods where the mean squared error (MSE) is considered as a performance criterion. Based on the Monte Carlo simulation and application results, it is shown that the Liu estimator is always superior to the ML and recommendation about which best Liu parameter should be used in the Liu estimator for the GR model is given.  相似文献   

10.
Under some nonstochastic linear restrictions based on either additional information or prior knowledge in a semiparametric regression model, a family of feasible generalized robust estimators for the regression parameter is proposed. The least trimmed squares (LTS) method proposed by Rousseeuw as a highly robust regression estimator is a statistical technique for fitting a regression model based on the subset of h observations (out of n) whose least-square fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h squared residuals. For practical purpose, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced. Then, we develop an algorithm for the LTS estimator based on feasible methods. Through the Monte Carlo simulation studies and a real data example, performance of the feasible type of robust estimators is compared with the classical ones in restricted semiparametric regression models.  相似文献   

11.
An alternative stochastic restricted Liu estimator in linear regression   总被引:2,自引:1,他引:1  
In this paper, we introduce an alternative stochastic restricted Liu estimator for the vector of parameters in a linear regression model when additional stochastic linear restrictions on the parameter vector are assumed to hold. The new estimator is a generalization of the ordinary mixed estimator (OME) (Durbin in J Am Stat Assoc 48:799–808, 1953; Theil and Goldberger in Int Econ Rev 2:65–78, 1961; Theil in J Am Stat Assoc 58:401–414, 1963) and Liu estimator proposed by Liu (Commun Stat Theory Methods 22:393–402, 1993). Necessary and sufficient conditions for the superiority of the new stochastic restricted Liu estimator over the OME, the Liu estimator and the estimator proposed by Hubert and Wijekoon (Stat Pap 47:471–479, 2006) in the mean squared error matrix (MSEM) sense are derived. Furthermore, a numerical example based on the widely analysed dataset on Portland cement (Woods et al. in Ind Eng Chem 24:1207–1241, 1932) and a Monte Carlo evaluation of the estimators are also given to illustrate some of the theoretical results.  相似文献   

12.
Jibo Wu 《Statistics》2016,50(6):1363-1375
Tabakan and Akdeniz [Difference-based ridge estimator of parameters in partial linear model. Statist Pap. 2010;51(2):357–368] proposed a difference-based ridge estimator (DBRE) in the partial linear model. In this paper, a new estimator is introduced by jackknifing the DBRE that Tabakan and Akdeniz presented. We investigate the performance of this new estimator over the DBRE and difference-based estimator introduced by Yatchew [An elementary estimator of the partial linear model. Econom Lett. 1997;57:135–143] in terms of mean-squared error and mean-squared error matrix and a numerical example is provided to demonstrate the performance of the estimators.  相似文献   

13.
ABSTRACT

Regression models are usually used in forecasting (predicting) unknown values of the response variable y. This article considers the predictive performance of the almost unbiased Liu estimator compared to the ordinary least-squares estimator, principal component regression estimator, and Liu estimator. Finally, we present a numerical example to explain the theoretical results and we obtain a region where the almost unbiased Liu estimator is uniformly superior to the ordinary least-squares estimator, principal component regression estimator, and Liu estimator.  相似文献   

14.
In this article, we aim to study the linearized ridge regression (LRR) estimator in a linear regression model motivated by the work of Liu (1993). The LRR estimator and the two types of generalized Liu estimators are investigated under the PRESS criterion. The method of obtaining the optimal generalized ridge regression (GRR) estimator is derived from the optimal LRR estimator. We apply the Hald data as a numerical example and then make a simulation study to show the main results. It is concluded that the idea of transforming the GRR estimator as a complicated function of the biasing parameters to a linearized version should be paid more attention in the future.  相似文献   

15.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

16.
Abstract

This article introduces some Liu parameters in the linear regression model based on the work of Shukur, Månsson, and Sjölander. These methods of estimating the Liu parameter d increase the efficiency of Liu estimator. The comparison of proposed Liu parameters and available methods has done using Monte Carlo simulation and a real data set where the mean squared error, mean absolute error and interval estimation are considered as performance criterions. The simulation study shows that under certain conditions the proposed Liu parameters perform quite well as compared to the ordinary least squares estimator and other existing Liu parameters.  相似文献   

17.
Improvement of the Liu estimator in linear regression model   总被引:2,自引:0,他引:2  
In the presence of stochastic prior information, in addition to the sample, Theil and Goldberger (1961) introduced a Mixed Estimator for the parameter vector β in the standard multiple linear regression model (T,2 I). Recently, the Liu estimator which is an alternative biased estimator for β has been proposed by Liu (1993). In this paper we introduce another new Liu type biased estimator called Stochastic restricted Liu estimator for β, and discuss its efficiency. The necessary and sufficient conditions for mean squared error matrix of the Stochastic restricted Liu estimator to exceed the mean squared error matrix of the mixed estimator will be derived for the two cases in which the parametric restrictions are correct and are not correct. In particular we show that this new biased estimator is superior in the mean squared error matrix sense to both the Mixed estimator and to the biased estimator introduced by Liu (1993).  相似文献   

18.
In this article, we propose a restricted Liu regression estimator (RLRE) for estimating the parameter vector, β, in the presence of multicollinearity, when the dependent variable is binary and it is suspected that β may belong to a linear subspace defined by ?=?r. First, we investigate the mean squared error (MSE) properties of the new estimator and compare them with those of the restricted maximum likelihood estimator (RMLE). Then we suggest some estimators of the shrinkage parameter, and a simulation study is conducted to compare the performance of the different estimators. Finally, we show the benefit of using RLRE instead of RMLE when estimating how changes in price affect consumer demand for a specific product.  相似文献   

19.
In the context of ridge regression, the estimation of shrinkage parameter plays an important role in analyzing data. Many efforts have been put to develop the computation of risk function in different full-parametric ridge regression approaches using eigenvalues and then bringing an efficient estimator of shrinkage parameter based on them. In this respect, the estimation of shrinkage parameter is neglected for semiparametric regression model. Not restricted, but the main focus of this approach is to develop necessary tools for computing the risk function of regression coefficient based on the eigenvalues of design matrix in semiparametric regression. For this purpose the differencing methodology is applied. We also propose a new estimator for shrinkage parameter which is of harmonic type mean of ridge estimators. It is shown that this estimator performs better than all the existing ones for the regression coefficient. For our proposal, a Monte Carlo simulation study and a real dataset analysis related to housing attributes are conducted to illustrate the efficiency of shrinkage estimators based on the minimum risk and mean squared error criteria.  相似文献   

20.
In this paper, we introduced a Liu-type estimator for the vector of parameters β in a semiparametric regression model. We also obtained the semiparametric restricted Liu-type estimator for the parametric component in a semiparametric regression model. The ideas in the paper are illustrated in a real data example and in a Monte Carlo simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号