首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Let X1:, X2:, …, Xn be iidrv's with cdf F?, F?(x)=F (x-θ), R. Let T be an equivariant median-unbiased estimator of θ. Let πε(F)={G = (1 -ε) F+εH, H any cdf} and let M(G, T) be a median of T if X1 has cdf G. The oscillation of the bias of T, defined as

Bε(T)=sup (M(G1 T) :G1,G2:∈πσ:(F)} ,is considered and the estimator with the smallest B$epsi;(T) is explicitly constructed  相似文献   

2.
Consider that we have a collection of k populations π1, π2…,πk. The quality of the ith population is characterized by a real parameter θi and the population is to be designated as superior or inferior depending on how much the θi differs from θmax = max{θ1, θ2,…,θk}. From the set {π1, π2,…,πk}, we wish to select the subset of superior populations. In this paper we devise rules of selection which have the property that their selected set excludes all the inferior populations with probability at least 1?α, where a is a specified number.  相似文献   

3.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

4.
This paper deals with the maximum likelihood estimation of parameters when the sample (x1…xn ) may heve k spuriously generated observations from another distribution, say G≠F, where F is the distribution of the target population. If G is stochastically larger than F, then these k observations may give rise to k extreme observations or ‘outliers’. This situation is often described by a so-called ‘k-outlier model’ in which in addition to the parameters involved in F and G, the set ν={ν1,…,νk} of indices, for which xνj , j=1,…,k, come from G, is also unknow.  相似文献   

5.
We present a decomposition of the correlation coefficient between xt and xt?k into three terms that include the partial and inverse autocorrelations. The first term accounts for the portion of the autocorrelation that is explained by the inner variables {xt?1 , xt?2 , …, x t? k+1}, the second one measures the portion explained by the outer variables {x t+1, x t+2, } ∪ {x t?k?1, x t?k?2,…} and the third term measures the correlation between x t and xt?k given all other variables. These terms, squared and summed, can form the basis of three portmanteau-type tests that are able to detect both deviation from white noise and lack of fit of an entertained model. Quantiles of their asymptotic sample distributions are complicated to derive at an adequate level of accuracy, so they are approximated using the Monte Carlo method. A simulation experiment is carried out to investigate significance levels and power of each test, and compare them to the portmanteau test.  相似文献   

6.
Consider a semi-Markov process {X(t), t>0} with transition epochs T0 T1, T2…. Suppose that at each one of the epochs {Tn} one of R possible events, E1, E2,…, ER can happen, where the occurrences of successive events form a Markov chain. for a fixed r, let the times the event Er happens be Uo U1, U2,…. In this paper we are interested in the process {Y(t), t>0)} where Y(t)=X(Uk) if and only if Uk≤tk+1. It will be shown that {Y(t)} is a semi-Markov process, and its properties with respect to those of {X(t)} will be examined.  相似文献   

7.
Let Y1,…,Y n, (Y1 <Y2<…<Y n) be the order statistics of a random sample from a distribution F with density f on the realline. This paper gives a class of estimators of the derivativef'(x) of the density f at points x for which f has

a continuoussecond derivative. These estimators are based on spacings inthe order statistics Yj+kn -y j j = 1,…,n-kn,kn<n.  相似文献   

8.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

9.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

10.
Let q = mt + 1 be a prime power, and let v(m, t) be the (m + 1)-vector (b1, b2, …, bm + 1) of elements of GF(q) such that for each k, 1 ⩽ km + 1, the set {bibj:i∈{1,2,…m+1} − {m + 2 − k}, ji + k(mod m + 2) and 1⩽jm+1} forms a system of representatives for the cyclotomic classes of index m in GF(q). In this paper, we investigate the existence of such vectors. An upper bound on t for the existence of a v(m, t) is given for each fixed m unless both m and t are even, in which case there is no such a vector. Some special cases are also considered.  相似文献   

11.
《随机性模型》2013,29(1):215-234
ABSTRACT

A basic difficulty in dealing with heavy-tailed distributions is that they may not have explicit Laplace transforms. This makes numerical methods that use the Laplace transform more challenging. This paper generalizes an existing method for approximating heavy-tailed distributions, for use in queueing analysis. The generalization involves fitting Chebyshev polynomials to a probability density function g(t) at specified points t 1, t 2, …, t N . By choosing points t i , which rapidly get far out in the tail, it is possible to capture the tail behavior with relatively few points, and to control the relative error in the approximation. We give numerical examples to evaluate the performance of the method in simple queueing problems.  相似文献   

12.
In an earlier paper the authors (1997) extended the results of Hayter (1990) to the two parameter exponential probability model. This paper addressee the extention to the scale parameter case under location-scale probability model. Consider k (k≧3) treatments or competing firms such that an observation from with treatment or firm follows a distribution with cumulative distribution function (cdf) Fi(x)=F[(x-μi)/Qi], where F(·) is any absolutely continuous cdf, i=1,…,k. We propose a test to test the null hypothesis H01=…=θk against the simple ordered alternative H11≦…≦θk, with at least one strict inequality, using the data Xi,j, i=1,…k; j=1,…,n1. Two methods to compute the critical points of the proposed test have been demonstrated by talking k two parameter exponential distributions. The test procedure also allows us to construct simultaneous one sided confidence intervals (SOCIs) for the ordered pairwise ratios θji, 1≦i<j≦k. Statistical simulation revealed that: 9i) actual sizes of the critical points are almost conservative and (ii) power of the proposed test relative to some existing tests is higher.  相似文献   

13.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

14.
Let Wt be a one-dimensional Brownian motion on the probability space (Ω,F,P), and let dxt = a(xt)dt + b(xt)dwt, b2(x) > 0, be a one-dimensional Ito stochastic differential equation. For a(x) = a0 + a1x + … + anxn on a bounded interval we obtain a lower bound for p(t,x,y), the transition density function of the homogeneous Markov process xt, depending directly on the coefficients a0,a1, …, an, and b(x).  相似文献   

15.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

16.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

17.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

18.
Covering arrays with mixed alphabet sizes, or mixed covering arrays, are useful generalizations of covering arrays that are motivated by software and network testing. Suppose that there are k factors, and that the ith factor takes values or levels from a set Gi of size gi. A run is an assignment of an admissible level to each factor. A mixed covering array, MCA(N;t,k,g1g2gk), is a collection of N runs such that for any t distinct factors, i1,i2,…,it, every t-tuple from Gi1×Gi2×?×Git occurs in factors i1,i2,…,it in at least one of the N runs. When g=g1=g2=?=gk, an MCA(N;t,k,g1g2gk) is a CA(N;t,k,g). The mixed covering array number, denoted by MCAN(t,k,g1g2gk), is the minimum N for which an MCA(N;t,k,g1g2gk) exists. In this paper, we focus on the constructions of mixed covering arrays of strength three. The numbers MCAN(3,k,g1g2gk) are determined for all cases with k∈{3,4} and for most cases with k∈{5,6}.  相似文献   

19.
We construct those distributions minimizing Fisher information for scale in Kolmogorov neighbourhoods K?(G) = {F|supx|F(x) - G(x| ? ?} of d.f.'s G satisfying certain mild conditions. The theory is sufficiently general to include those cases in which G is normal, Laplace, logistic, Student's t, etc. As well, we consider G(x) = 1 - e-x, ? 0, and correct some errors in the literature concerning this case.  相似文献   

20.
Let T2 i=z′iS?1zi, i==,…k be correlated Hotelling's T2 statistics under normality. where z=(z′i,…,z′k)′ and nS are independently distributed as Nkp((O,ρ?∑) and Wishart distribution Wp(∑, n), respectively. The purpose of this paper is to study the distribution function F(x1,…,xk) of (T2 i,…,T2 k) when n is large. First we derive an asymptotic expansion of the characteristic function of (T2 i,…,T2 k) up to the order n?2. Next we give asymptotic expansions for (T2 i,…,T2 k) in two cases (i)ρ=Ik and (ii) k=2 by inverting the expanded characteristic function up to the orders n?2 and n?1, respectively. Our results can be applied to the distribution function of max (T2 i,…,T2 k) as a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号