首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of approximating an interval null or imprecise hypothesis test by a point null or precise hypothesis test under a Bayesian framework is considered. In the literature, some of the methods for solving this problem have used the Bayes factor for testing a point null and justified it as an approximation to the interval null. However, many authors recommend evaluating tests through the posterior odds, a Bayesian measure of evidence against the null hypothesis. It is of interest then to determine whether similar results hold when using the posterior odds as the primary measure of evidence. For the prior distributions under which the approximation holds with respect to the Bayes factor, it is shown that the posterior odds for testing the point null hypothesis does not approximate the posterior odds for testing the interval null hypothesis. In fact, in order to obtain convergence of the posterior odds, a number of restrictive conditions need to be placed on the prior structure. Furthermore, under a non-symmetrical prior setup, neither the Bayes factor nor the posterior odds for testing the imprecise hypothesis converges to the Bayes factor or posterior odds respectively for testing the precise hypothesis. To rectify this dilemma, it is shown that constraints need to be placed on the priors. In both situations, the class of priors constructed to ensure convergence of the posterior odds are not practically useful, thus questioning, from a Bayesian perspective, the appropriateness of point null testing in a problem better represented by an interval null. The theories developed are also applied to an epidemiological data set from White et al. (Can. Veterinary J. 30 (1989) 147–149.) in order to illustrate and study priors for which the point null hypothesis test approximates the interval null hypothesis test. AMS Classification: Primary 62F15; Secondary 62A15  相似文献   

2.
Substitution of a mixed prior distribution by a continuous one for the point null hypothesis testing problem is discussed. Conditions are established in order to approximate the Bayes factors for the two problems. Besides, trough this approximation an assignation of priorprobabilities is suggested.  相似文献   

3.
Summary.  Traditionally, the use of Bayes factors has required the specification of proper prior distributions on model parameters that are implicit to both null and alternative hypotheses. I describe an approach to defining Bayes factors based on modelling test statistics. Because the distributions of test statistics do not depend on unknown model parameters, this approach eliminates much of the subjectivity that is normally associated with the definition of Bayes factors. For standard test statistics, including the χ 2-, F -, t - and z -statistics, the values of Bayes factors that result from this approach have simple, closed form expressions.  相似文献   

4.
Minimax squared error risk estimators of the mean of a multivariate normal distribution are characterized which have smallest Bayes risk with respect to a spherically symmetric prior distribution for (i) squared error loss, and (ii) zero-one loss depending on whether or not estimates are consistent with the hypothesis that the mean is null. In (i), the optimal estimators are the usual Bayes estimators for prior distributions with special structure. In (ii), preliminary test estimators are optimal. The results are obtained by applying the theory of minimax-Bayes-compromise decision problems.  相似文献   

5.
This article deals with Bayes factors as useful Bayesian tools in frequentist testing of a precise hypothesis. A result and several examples are included to justify the definition of Bayes factor for point null hypotheses, without merging the initial distribution with a degenerate distribution on the null hypothesis. Of special interest is the problem of testing a proportion (joint with a natural criterion to compare different tests), the possible presence of nuisance parameters, or the influence of Bayesian sufficiency on this problem. The problem of testing a precise hypothesis under a Bayesian perspective is also considered and two alternative methods to deal with are given.  相似文献   

6.
The normalized maximum likelihood (NML) is a recent penalized likelihood that has properties that justify defining the amount of discrimination information (DI) in the data supporting an alternative hypothesis over a null hypothesis as the logarithm of an NML ratio, namely, the alternative hypothesis NML divided by the null hypothesis NML. The resulting DI, like the Bayes factor but unlike the P‐value, measures the strength of evidence for an alternative hypothesis over a null hypothesis such that the probability of misleading evidence vanishes asymptotically under weak regularity conditions and such that evidence can support a simple null hypothesis. Instead of requiring a prior distribution, the DI satisfies a worst‐case minimax prediction criterion. Replacing a (possibly pseudo‐) likelihood function with its weighted counterpart extends the scope of the DI to models for which the unweighted NML is undefined. The likelihood weights leverage side information, either in data associated with comparisons other than the comparison at hand or in the parameter value of a simple null hypothesis. Two case studies, one involving multiple populations and the other involving multiple biological features, indicate that the DI is robust to the type of side information used when that information is assigned the weight of a single observation. Such robustness suggests that very little adjustment for multiple comparisons is warranted if the sample size is at least moderate. The Canadian Journal of Statistics 39: 610–631; 2011. © 2011 Statistical Society of Canada  相似文献   

7.
A Bayesian approach is considered to study the change point problems. A hypothesis for testing change versus no change is considered using the notion of predictive distributions. Bayes factors are developed for change versus no change in the exponential families of distributions with conjugate priors. Under vague prior information, both Bayes factors and pseudo Bayes factors are considered. A new result is developed which describes how the overall Bayes factor has a decomposition into Bayes factors at each point. Finally, an example is provided in which the computations are performed using the concept of imaginary observations.  相似文献   

8.
In the Bayesian approach, the Behrens–Fisher problem has been posed as one of estimation for the difference of two means. No Bayesian solution to the Behrens–Fisher testing problem has yet been given due, perhaps, to the fact that the conventional priors used are improper. While default Bayesian analysis can be carried out for estimation purposes, it poses difficulties for testing problems. This paper generates sensible intrinsic and fractional prior distributions for the Behrens–Fisher testing problem from the improper priors commonly used for estimation. It allows us to compute the Bayes factor to compare the null and the alternative hypotheses. This default procedure of model selection is compared with a frequentist test and the Bayesian information criterion. We find discrepancy in the sense that frequentist and Bayesian information criterion reject the null hypothesis for data, that the Bayes factor for intrinsic or fractional priors do not.  相似文献   

9.
Several alternative Bayes factors have been recently proposed in order to solve the problem of the extreme sensitivity of the Bayes factor to the priors of models under comparison. Specifically, the impossibility of using the Bayes factor with standard noninformative priors for model comparison has led to the introduction of new automatic criteria, such as the posterior Bayes factor (Aitkin 1991), the intrinsic Bayes factors (Berger and Pericchi 1996b) and the fractional Bayes factor (O'Hagan 1995). We derive some interesting properties of the fractional Bayes factor that provide justifications for its use additional to the ones given by O'Hagan. We further argue that the use of the fractional Bayes factor, originally introduced to cope with improper priors, is also useful in a robust analysis. Finally, using usual classes of priors, we compare several alternative Bayes factors for the problem of testing the point null hypothesis in the univariate normal model.  相似文献   

10.
ABSTRACT

Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? p-Values themselves do not directly answer this question and are often misinterpreted in ways that lead to overstating the evidence against the null hypothesis. Even in the “post p?<?0.05 era,” however, it is quite possible that p-values will continue to be widely reported and used to assess the strength of evidence (if for no other reason than the widespread availability and use of statistical software that routinely produces p-values and thereby implicitly advocates for their use). If so, the potential for misinterpretation will persist. In this article, we recommend three practices that would help researchers more accurately interpret p-values. Each of the three recommended practices involves interpreting p-values in light of their corresponding “Bayes factor bound,” which is the largest odds in favor of the alternative hypothesis relative to the null hypothesis that is consistent with the observed data. The Bayes factor bound generally indicates that a given p-value provides weaker evidence against the null hypothesis than typically assumed. We therefore believe that our recommendations can guard against some of the most harmful p-value misinterpretations. In research communities that are deeply attached to reliance on “p?<?0.05,” our recommendations will serve as initial steps away from this attachment. We emphasize that our recommendations are intended merely as initial, temporary steps and that many further steps will need to be taken to reach the ultimate destination: a holistic interpretation of statistical evidence that fully conforms to the principles laid out in the ASA statement on statistical significance and p-values.  相似文献   

11.
This article shows that an F-test procedure is admissible for testing a linear hypothesis concerning one of the split mean vectors in a general linear model and an F-test procedure is also admissible for testing a linear hypothesis concerning another of the split mean vectors in the same model. These results are proved by showing that the critical functions of the tests are unique Bayes procedures with respect to proper prior distributions set in common for the null hypotheses and for the alternative ones, respectively.  相似文献   

12.
The authors consider the correlation between two arbitrary functions of the data and a parameter when the parameter is regarded as a random variable with given prior distribution. They show how to compute such a correlation and use closed form expressions to assess the dependence between parameters and various classical or robust estimators thereof, as well as between p‐values and posterior probabilities of the null hypothesis in the one‐sided testing problem. Other applications involve the Dirichlet process and stationary Gaussian processes. Using this approach, the authors also derive a general nonparametric upper bound on Bayes risks.  相似文献   

13.
The Bayes factor is a key tool in hypothesis testing. Nevertheless, the important issue of which priors should be used to develop objective Bayes factors remains open. The authors consider this problem in the context of the one-way random effects model. They use concepts such as orthogonality, predictive matching and invariance to justify a specific form of the priors for common parameters and derive the intrinsic and divergence based prior for the new parameter. The authors show that both intrinsic priors or divergence-based priors produce consistent Bayes factors. They illustrate the methods and compare them with other proposals.  相似文献   

14.
We study the association between bone mineral density (BMD) and body mass index (BMI) when contingency tables are constructed from the several U.S. counties, where BMD has three levels (normal, osteopenia and osteoporosis) and BMI has four levels (underweight, normal, overweight and obese). We use the Bayes factor (posterior odds divided by prior odds or equivalently the ratio of the marginal likelihoods) to construct the new test. Like the chi-squared test and Fisher's exact test, we have a direct Bayes test which is a standard test using data from each county. In our main contribution, for each county techniques of small area estimation are used to borrow strength across counties and a pooled test of independence of BMD and BMI is obtained using a hierarchical Bayesian model. Our pooled Bayes test is computed by performing a Monte Carlo integration using random samples rather than Gibbs samples. We have seen important differences among the pooled Bayes test, direct Bayes test and the Cressie-Read test that allows for some degree of sparseness, when the degree of evidence against independence is studied. As expected, we also found that the direct Bayes test is sensitive to the prior specifications but the pooled Bayes test is not so sensitive. Moreover, the pooled Bayes test has competitive power properties, and it is superior when the cell counts are small to moderate.  相似文献   

15.
Case-control studies of genetic polymorphisms and gene-environment interactions are reporting large numbers of statistically significant associations, many of which are likely to be spurious. This problem reflects the low prior probability that any one null hypothesis is false, and the large number of test results reported for a given study. In a Bayesian approach to the low prior probabilities, Wacholder et al. (2004) suggest supplementing the p-value for a hypothesis with its posterior probability given the study data. In a frequentist approach to the test multiplicity problem, Benjamini & Hochberg (1995) propose a hypothesis-rejection rule that provides greater statistical power by controlling the false discovery rate rather than the family-wise error rate controlled by the Bonferroni correction. This paper defines a Bayes false discovery rate and proposes a Bayes-based rejection rule for controlling it. The method, which combines the Bayesian approach of Wacholder et al. with the frequentist approach of Benjamini & Hochberg, is used to evaluate the associations reported in a case-control study of breast cancer risk and genetic polymorphisms of genes involved in the repair of double-strand DNA breaks.  相似文献   

16.
The problem of testing a point null hypothesis involving an exponential mean is The problem of testing a point null hypothesis involving an exponential mean is usual interpretation of P-values as evidence against precise hypotheses is faulty. As in Berger and Delampady (1986) and Berger and Sellke (1987), lower bounds on Bayesian measures of evidence over wide classes of priors are found emphasizing the conflict between posterior probabilities and P-values. A hierarchical Bayes approach is also considered as an alternative to computing lower bounds and “automatic” Bayesian significance tests which further illustrates the point that P-values are highly misleading measures of evidence for tests of point null hypotheses.  相似文献   

17.
In objective Bayesian model selection, a well-known problem is that standard non-informative prior distributions cannot be used to obtain a sensible outcome of the Bayes factor because these priors are improper. The use of a small part of the data, i.e., a training sample, to obtain a proper posterior prior distribution has become a popular method to resolve this issue and seems to result in reasonable outcomes of default Bayes factors, such as the intrinsic Bayes factor or a Bayes factor based on the empirical expected-posterior prior.  相似文献   

18.
Uniformly most powerful Bayesian tests (UMPBTs) are a new class of Bayesian tests in which null hypotheses are rejected if their Bayes factor exceeds a specified threshold. The alternative hypotheses in UMPBTs are defined to maximize the probability that the null hypothesis is rejected. Here, we generalize the notion of UMPBTs by restricting the class of alternative hypotheses over which this maximization is performed, resulting in restricted most powerful Bayesian tests (RMPBTs). We then derive RMPBTs for linear models by restricting alternative hypotheses to g priors. For linear models, the rejection regions of RMPBTs coincide with those of usual frequentist F‐tests, provided that the evidence thresholds for the RMPBTs are appropriately matched to the size of the classical tests. This correspondence supplies default Bayes factors for many common tests of linear hypotheses. We illustrate the use of RMPBTs for ANOVA tests and t‐tests and compare their performance in numerical studies.  相似文献   

19.
ABSTRACT

We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm—and the p-value thresholds intrinsic to it—as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to “ban” p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly.  相似文献   

20.
One method of testing for independence in a two-way table is based on the Bayes factor, the ratio of the likelihoods under the independence hypothesis H and the alternative hypothesis H. The main difficulty in this approach is the specification of prior distributions on the composite hypotheses H and H. A new Bayesian test statistic is constructed by using a prior distribution on H that is concentrated about the “independence surface” H. Approximations are proposed which simplify the computation of the test statistic. The values of the Bayes factor are compared with values of statistics proposed by Gunel and Dickey (1974), Good and Crook (1987), and Spiegelhalter and Smith (1982) for a number of two-way tables. This investigation suggests a strong relationship between the new statistic and the p-value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号