首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present article deals with the problem of estimation of parameters in a linear regression model when some data on response variable is missing and the responses are equi-correlated. The ordinary least squares and optimal homogeneous predictors are employed to find the imputed values of missing observations. Their efficiency properties are analyzed using the small disturbances asymptotic theory. The estimation of regression coefficients using these imputed values is also considered and a comparison of estimators is presented.  相似文献   

2.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

3.
This paper considers the nonparametric inverse probability weighted estimation for functional data with missing response data at random. Under mild conditions, the asymptotic properties of the proposed estimation method are established. Based on the resampling method, the estimation of the asymptotic variance of the proposed estimator is obtained. Finally, the finite sample properties of the proposed estimation method are investigated via Monte Carlo simulation studies. A real data analysis is given to illustrate the use of the proposed method.  相似文献   

4.
In longitudinal data, missing observations occur commonly with incomplete responses and covariates. Missing data can have a ‘missing not at random’ mechanism, a non‐monotone missing pattern, and moreover response and covariates can be missing not simultaneously. To avoid complexities in both modelling and computation, a two‐stage estimation method and a pairwise‐likelihood method are proposed. The two‐stage estimation method enjoys simplicities in computation, but incurs more severe efficiency loss. On the other hand, the pairwise approach leads to estimators with better efficiency, but can be cumbersome in computation. In this paper, we develop a compromise method using a hybrid pairwise‐likelihood framework. Our proposed approach has better efficiency than the two‐stage method, but its computational cost is still reasonable compared to the pairwise approach. The performance of the methods is evaluated empirically by means of simulation studies. Our methods are used to analyse longitudinal data obtained from the National Population Health Study.  相似文献   

5.
For an estimation with missing data, a crucial step is to determine if the data are missing completely at random (MCAR), in which case a complete‐case analysis would suffice. Most existing tests for MCAR do not provide a method for a subsequent estimation once the MCAR is rejected. In the setting of estimating means, we propose a unified approach for testing MCAR and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing can then be used for estimation. The resulting estimators are consistent if the missingness of each response variable depends only on a set of fully observed auxiliary variables and the true outcome regression model is among the user‐specified functions for deriving the weights. The proposed method is based on the calibration idea from survey sampling literature and the empirical likelihood theory.  相似文献   

6.
邰凌楠等 《统计研究》2018,35(9):115-128
数据缺失问题普遍存在于应用研究中。在随机缺失机制假定下,本文从模型推断角度出发,针对线性缺失分位回归模型,提出一种新的有效估计方法——逆概率多重加权(IPMW)估计。该方法是在逆概率加权(IPW)估计的基础上,结合倾向得分匹配及模型平均思想,经过多次估计,加权确定最终参数估计结果。该方法适用于响应变量是独立同分布或独立非同分布的情形,并适用于绝大多数缺失场景。经过理论推导及模拟研究发现,IPMW估计量在继承IPW估计量的优势上具有更稳健的性质。最后,将该方法应用于含有缺失数据的微观调查数据中,研究了经济较发达的准一线城市中等收入群体消费水平的影响因素,对比两种估计方法的估计结果及置信带,发现逆概率多重加权估计量的标准偏差更小,估计结果更稳健。  相似文献   

7.
In longitudinal studies, missing responses and mismeasured covariates are commonly seen due to the data collection process. Without cautiousness in data analysis, inferences from the standard statistical approaches may lead to wrong conclusions. In order to improve the estimation for longitudinal data analysis, a doubly robust estimation method for partially linear models, which can simultaneously account for the missing responses and mismeasured covariates, is proposed. Imprecisions of covariates are corrected by taking advantage of the independence between replicate measurement errors, and missing responses are handled by the doubly robust estimation under the mechanism of missing at random. The asymptotic properties of the proposed estimators are established under regularity conditions, and simulation studies demonstrate desired properties. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study.  相似文献   

8.
Nonresponse is a very common phenomenon in survey sampling. Nonignorable nonresponse – that is, a response mechanism that depends on the values of the variable having nonresponse – is the most difficult type of nonresponse to handle. This article develops a robust estimation approach to estimating equations (EEs) by incorporating the modelling of nonignorably missing data, the generalized method of moments (GMM) method and the imputation of EEs via the observed data rather than the imputed missing values when some responses are subject to nonignorably missingness. Based on a particular semiparametric logistic model for nonignorable missing response, this paper proposes the modified EEs to calculate the conditional expectation under nonignorably missing data. We can apply the GMM to infer the parameters. The advantage of our method is that it replaces the non-parametric kernel-smoothing with a parametric sampling importance resampling (SIR) procedure to avoid nonparametric kernel-smoothing problems with high dimensional covariates. The proposed method is shown to be more robust than some current approaches by the simulations.  相似文献   

9.
The problem of confidence estimation of a normal mean vector when data on different subsets of response variables are missing is considered. A simple approximate confidence region is proposed when the data matrix is of monotone pattern. Simultaneous inferential procedures based on Scheffe's method and Bonferroni's method are outlined. Further, applications of the results to a repeated measurements model are given. The results are illustrated using a practical example.  相似文献   

10.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

11.
Clustered longitudinal data feature cross‐sectional associations within clusters, serial dependence within subjects, and associations between responses at different time points from different subjects within the same cluster. Generalized estimating equations are often used for inference with data of this sort since they do not require full specification of the response model. When data are incomplete, however, they require data to be missing completely at random unless inverse probability weights are introduced based on a model for the missing data process. The authors propose a robust approach for incomplete clustered longitudinal data using composite likelihood. Specifically, pairwise likelihood methods are described for conducting robust estimation with minimal model assumptions made. The authors also show that the resulting estimates remain valid for a wide variety of missing data problems including missing at random mechanisms and so in such cases there is no need to model the missing data process. In addition to describing the asymptotic properties of the resulting estimators, it is shown that the method performs well empirically through simulation studies for complete and incomplete data. Pairwise likelihood estimators are also compared with estimators obtained from inverse probability weighted alternating logistic regression. An application to data from the Waterloo Smoking Prevention Project is provided for illustration. The Canadian Journal of Statistics 39: 34–51; 2011 © 2010 Statistical Society of Canada  相似文献   

12.
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputation. The HT approach, employing inverse kernel-estimated weights, includes the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals. Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to kernel regression imputation estimator under standard regularity conditions of the regression function and the missing pattern function. A comprehensive simulation study shows that the basic HT estimator is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators can be insensitive to missing data patterns unbalanced with respect to the distribution of the covariate. Empirical studies show that the nearest neighbor imputation method is most effective among these imputation methods for estimating a finite population mean and for classifying the species of the iris flower data.  相似文献   

13.
This article addresses issues in creating public-use data files in the presence of missing ordinal responses and subsequent statistical analyses of the dataset by users. The authors propose a fully efficient fractional imputation (FI) procedure for ordinal responses with missing observations. The proposed imputation strategy retrieves the missing values through the full conditional distribution of the response given the covariates and results in a single imputed data file that can be analyzed by different data users with different scientific objectives. Two most critical aspects of statistical analyses based on the imputed data set,  validity  and  efficiency, are examined through regression analysis involving the ordinal response and a selected set of covariates. It is shown through both theoretical development and simulation studies that, when the ordinal responses are missing at random, the proposed FI procedure leads to valid and highly efficient inferences as compared to existing methods. Variance estimation using the fractionally imputed data set is also discussed. The Canadian Journal of Statistics 48: 138–151; 2020 © 2019 Statistical Society of Canada  相似文献   

14.
In the longitudinal studies with binary response, it is often of interest to estimate the percentage of positive responses at each time point and the percentage of having at least one positive response by each time point. When missing data exist, the conventional method based on observed percentages could result in erroneous estimates. This study demonstrates two methods of using expectation-maximization (EM) and data augmentation (DA) algorithms in the estimation of the marginal and cumulative probabilities for incomplete longitudinal binary response data. Both methods provide unbiased estimates when the missingness mechanism is missing at random (MAR) assumption. Sensitivity analyses have been performed for cases when the MAR assumption is in question.  相似文献   

15.
To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected empirical likelihood (EL) methods in conjunction with dimension-reduced kernel estimation of propensity or/and conditional mean response function. Consistency and asymptotic normality of the maximum dimension-reduced EL estimators are established. We further study the asymptotic properties of the resulting dimension-reduced EL ratio functions and the corresponding EL confidence intervals for the response mean are constructed. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented.  相似文献   

16.
Incomplete data subject to non‐ignorable non‐response are often encountered in practice and have a non‐identifiability problem. A follow‐up sample is randomly selected from the set of non‐respondents to avoid the non‐identifiability problem and get complete responses. Glynn, Laird, & Rubin analyzed non‐ignorable missing data with a follow‐up sample under a pattern mixture model. In this article, maximum likelihood estimation of parameters of the categorical missing data is considered with a follow‐up sample under a selection model. To estimate the parameters with non‐ignorable missing data, the EM algorithm with weighting, proposed by Ibrahim, is used. That is, in the E‐step, the weighted mean is calculated using the fractional weights for imputed data. Variances are estimated using the approximated jacknife method. Simulation results are presented to compare the proposed method with previously presented methods.  相似文献   

17.
This paper is concerned with Bayesian estimation of a spatial regression model with skew non-Gaussian errors. The regression parameters are estimated by using a closed skew normal (CSN) distribution, which is closed under conditioning and linear combination. The proposed model captures skewness in the response variable. Sometimes, we may encounter missing observations in the response variable, accordingly we model and predict the missing observations by a Bayesian approach using Gibbs sampling methods. Next, a simulation study is performed to asses our model validity. Also, the proposed model in this work is applied to CO data from Tehran, the capital city of Iran. Then, the accuracy of the CSN and Gaussian models is compared by cross validation criterion.  相似文献   

18.
ABSTRACT

This paper analyses the behaviour of the goodness-of-fit tests for regression models. To this end, it uses statistics based on an estimation of the integrated regression function with missing observations either in the response variable or in some of the covariates. It proposes several versions of one empirical process, constructed from a previous estimation, that uses only the complete observations or replaces the missing observations with imputed values. In the case of missing covariates, a link model is used to fill the missing observations with other complete covariates. In all the situations, Bootstrap methodology is used to calibrate the distribution of the test statistics. A broad simulation study compares the different procedures based on empirical regression methodology, with smoothed tests previously studied in the literature. The comparison reflects the effect of the correlation between the covariates in the tests based on the imputed sample for missing covariates. In addition, the paper proposes a computational binning strategy to evaluate the tests based on an empirical process for large data sets. Finally, two applications to real data illustrate the performance of the tests.  相似文献   

19.
We consider the problem of full information maximum likelihood (FIML) estimation in factor analysis when a majority of the data values are missing. The expectation–maximization (EM) algorithm is often used to find the FIML estimates, in which the missing values on manifest variables are included in complete data. However, the ordinary EM algorithm has an extremely high computational cost. In this paper, we propose a new algorithm that is based on the EM algorithm but that efficiently computes the FIML estimates. A significant improvement in the computational speed is realized by not treating the missing values on manifest variables as a part of complete data. When there are many missing data values, it is not clear if the FIML procedure can achieve good estimation accuracy. In order to investigate this, we conduct Monte Carlo simulations under a wide variety of sample sizes.  相似文献   

20.
Summary.  The paper develops a data augmentation method to estimate the distribution function of a variable, which is partially observed, under a non-ignorable missing data mechanism, and where surrogate data are available. An application to the estimation of hourly pay distributions using UK Labour Force Survey data provides the main motivation. In addition to considering a standard parametric data augmentation method, we consider the use of hot deck imputation methods as part of the data augmentation procedure to improve the robustness of the method. The method proposed is compared with standard methods that are based on an ignorable missing data mechanism, both in a simulation study and in the Labour Force Survey application. The focus is on reducing bias in point estimation, but variance estimation using multiple imputation is also considered briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号