首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
For a multiple regression model, bearing the plausibility of a subset of the regression parameters being close to a pivot, for the complementary subset, based on the usual James-Stein rule, a general formulation of shrinkage R-estimation is considered. In the light of asymptotic distributional risks of estimators, performance characteristics ( under local alternatives) of the classical R-est-imator and its preliminary test and shrinkage versions (all based on the common score function ) are studied. These shed light on the relative dominance picture in a meaningful asymptotic setup.  相似文献   

2.
In a multi-sample simple regression model, generally, homogeneity of the regression slopes leads to improved estimation of the intercepts. Analogous to the preliminary test estimators, (smooth) shrinkage least squares estimators of Intercepts based on the James-Stein rule on regression slopes are considered. Relative pictures on the (asymptotic) risk of the classical, preliminary test and the shrinkage least squares estimators are also presented. None of the preliminary test and shrinkage least squares estimators may dominate over the other, though each of them fares well relative to the other estimators.  相似文献   

3.
In this paper we address the problem of estimating a vector of regression parameters in the Weibull censored regression model. Our main objective is to provide natural adaptive estimators that significantly improve upon the classical procedures in the situation where some of the predictors may or may not be associated with the response. In the context of two competing Weibull censored regression models (full model and candidate submodel), we consider an adaptive shrinkage estimation strategy that shrinks the full model maximum likelihood estimate in the direction of the submodel maximum likelihood estimate. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Further, we consider a LASSO type estimation strategy and compare the relative performance with the shrinkage estimators. Monte Carlo simulations reveal that when the true model is close to the candidate submodel, the shrinkage strategy performs better than the LASSO strategy when, and only when, there are many inactive predictors in the model. Shrinkage and LASSO strategies are applied to a real data set from Veteran's administration (VA) lung cancer study to illustrate the usefulness of the procedures in practice.  相似文献   

4.
Multiresponse experiments in two-faoior manova are considered. StalibLical procedures of the test and estimation, based on studentized robust statistics. for location parameters in the models arc piupused. Large sample properties of their procedures as the cell sizes tend to infinity are investigated. Although Fisher's consistency is assumed in the theory ol ili-estimators, it is not needed. in this paper. For the univariate case, it is found that the asymptotic relative efficiencies (ARE's) of the proposed procedures relative to classical procedures agrees with the classical A/Sisresults of Huber's one sample Mestimator relative to the sample mean. By simulation studies, it can be seen that the proposed estimators are more efficient than the least squares estimators except for the case where the underlying distribution is normal  相似文献   

5.
Dolby's (1976) ultrastructural model with no replications is investigated within the class of the elliptical distributions. General asymptotic results are given for the sample covariance matrix S in the presence of incidental parameters. These results are used to study the asymptotic behaviour of some estimators of the slope parameter, unifying and extending existing results in the literature. In particular, under some regularity conditions they are shown to be consistent and asymptotically normal. For the special case of the structural model, some asymptotic relative efficiencies are also reported which show that generalized least squares and the method of moment estimators can be highly inefficient under nonnormality.  相似文献   

6.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

7.
Aalen's nonparametric additive model in which the regression coefficients are assumed to be unspecified functions of time is a flexible alternative to Cox's proportional hazards model when the proportionality assumption is in doubt. In this paper, we incorporate a general linear hypothesis into the estimation of the time‐varying regression coefficients. We combine unrestricted least squares estimators and estimators that are restricted by the linear hypothesis and produce James‐Stein‐type shrinkage estimators of the regression coefficients. We develop the asymptotic joint distribution of such restricted and unrestricted estimators and use this to study the relative performance of the proposed estimators via their integrated asymptotic distributional risks. We conduct Monte Carlo simulations to examine the relative performance of the estimators in terms of their integrated mean square errors. We also compare the performance of the proposed estimators with a recently devised LASSO estimator as well as with ridge‐type estimators both via simulations and data on the survival of primary billiary cirhosis patients.  相似文献   

8.
For the regression model y=X β+ε where the errors follow the elliptically contoured distribution, we consider the least squares, restricted least squares, preliminary test, Stein-type shrinkage and positive-rule shrinkage estimators for the regression parameters, β.

We compare the quadratic risks of the estimators to determine the relative dominance properties of the five estimators.  相似文献   

9.
In this paper, we consider the shrinkage and penalty estimation procedures in the linear regression model with autoregressive errors of order p when it is conjectured that some of the regression parameters are inactive. We develop the statistical properties of the shrinkage estimation method including asymptotic distributional biases and risks. We show that the shrinkage estimators have a significantly higher relative efficiency than the classical estimator. Furthermore, we consider the two penalty estimators: least absolute shrinkage and selection operator (LASSO) and adaptive LASSO estimators, and numerically compare their relative performance with that of the shrinkage estimators. A Monte Carlo simulation experiment is conducted for different combinations of inactive predictors and the performance of each estimator is evaluated in terms of the simulated mean-squared error. This study shows that the shrinkage estimators are comparable to the penalty estimators when the number of inactive predictors in the model is relatively large. The shrinkage and penalty methods are applied to a real data set to illustrate the usefulness of the procedures in practice.  相似文献   

10.
This article considers the shrinkage estimation procedure in the Cox's proportional hazards regression model when it is suspected that some of the parameters may be restricted to a subspace. We have developed the statistical properties of the shrinkage estimators including asymptotic distributional biases and risks. The shrinkage estimators have much higher relative efficiency than the classical estimator, furthermore, we consider two penalty estimators—the LASSO and adaptive LASSO—and compare their relative performance with that of the shrinkage estimators numerically. A Monte Carlo simulation experiment is conducted for different combinations of irrelevant predictors and the performance of each estimator is evaluated in terms of simulated mean squared error. Simulation study shows that the shrinkage estimators are comparable to the penalty estimators when the number of irrelevant predictors in the model is relatively large. The shrinkage and penalty methods are applied to two real data sets to illustrate the usefulness of the procedures in practice.  相似文献   

11.
In the multinomial regression model, we consider the methodology for simultaneous model selection and parameter estimation by using the shrinkage and LASSO (least absolute shrinkage and selection operation) [R. Tibshirani, Regression shrinkage and selection via the LASSO, J. R. Statist. Soc. Ser. B 58 (1996), pp. 267–288] strategies. The shrinkage estimators (SEs) provide significant improvement over their classical counterparts in the case where some of the predictors may or may not be active for the response of interest. The asymptotic properties of the SEs are developed using the notion of asymptotic distributional risk. We then compare the relative performance of the LASSO estimator with two SEs in terms of simulated relative efficiency. A simulation study shows that the shrinkage and LASSO estimators dominate the full model estimator. Further, both SEs perform better than the LASSO estimators when there are many inactive predictors in the model. A real-life data set is used to illustrate the suggested shrinkage and LASSO estimators.  相似文献   

12.
A simple estimation procedure, based on the generalized least squares method, for the parameters of the Weibull distribution is described and investigated. Through a simulation study, this estimation technique is compared with maximum likelihood estimation, ordinary least squares estimation, and Menon's estimation procedure; this comparison is based on observed relative efficiencies (that is, the ratio of the Cramer-Rao lower bound to the observed mean squared error). Simulation results are presented for samples of size 25. Among the estimators considered in this simulation study, the generalized least squares estimator was found to be the "best" estimator for the shape parameter and a close competitor to the maximum likelihood estimator of the scale parameter.  相似文献   

13.
Estimating parameters in heavy-tailed distribution plays a central role in extreme value theory. It is well known that classical estimators based on the first order asymptotics such as the Hill, rank-based and QQ estimators are seriously biased under finer second order regular variation framework. To reduce the bias, many authors proposed the so-called second order reduced bias estimators for both first and second order tail parameters. In this work, estimation of parameters in heavy-tailed distributions are studied under the second order regular variation framework when the second order parameter in the distribution tail is known. This is motivated in large part by a recent work by the authors showing that the second order tail parameter is known for a large class of popular random difference equations (for example, ARCH models). The focus is on least squares estimators that generalize rank-based and QQ estimators. Though other possible estimators are also briefly discussed, the least squares estimators are most simple to use and perform best for finite samples in Monte Carlo simulations.  相似文献   

14.
For a general class of continuous ( and marginally symmetric ) inultivariate distributions, based on suitable M-statistics ( involving bounded but possibly discontinuous score generating functions), shrinkage estimators of location are considered. These estimators are based on the James-Stein type rule and incorporates the idea of preliminary test estimation too. The main emphasis is laid on the study of asymptotic tdistributional ) risk properties of these est-innators, and asymptotic tin-) adraissibility results are also studied under fairly general regularity conditions.  相似文献   

15.
We introduce in this paper, the shrinkage estimation method in the lognormal regression model for censored data involving many predictors, some of which may not have any influence on the response of interest. We develop the asymptotic properties of the shrinkage estimators (SEs) using the notion of asymptotic distributional biases and risks. We show that if the shrinkage dimension exceeds two, the asymptotic risk of the SEs is strictly less than the corresponding classical estimators. Furthermore, we study the penalty (LASSO and adaptive LASSO) estimation methods and compare their relative performance with the SEs. A simulation study for various combinations of the inactive predictors and censoring percentages shows that the SEs perform better than the penalty estimators in certain parts of the parameter space, especially when there are many inactive predictors in the model. It also shows that the shrinkage and penalty estimators outperform the classical estimators. A real-life data example using Worcester heart attack study is used to illustrate the performance of the suggested estimators.  相似文献   

16.
ABSTRACT

This article addresses the problem of parameter estimation of the logistic regression model under subspace information via linear shrinkage, pretest, and shrinkage pretest estimators along with the traditional unrestricted maximum likelihood estimator and restricted estimator. We developed an asymptotic theory for the linear shrinkage and pretest estimators and compared their relative performance using the notion of asymptotic distributional bias and asymptotic quadratic risk. The analytical results demonstrated that the proposed estimation strategies outperformed the classical estimation strategies in a meaningful parameter space. Detailed Monte-Carlo simulation studies were conducted for different combinations and the performance of each estimation method was evaluated in terms of simulated relative efficiency. The results of the simulation study were in strong agreement with the asymptotic analytical findings. Two real-data examples are also given to appraise the performance of the estimators.  相似文献   

17.
This paper discusses the problem of estimating a subset of parameters when the complementary subset is possibly redundant, in a linear regression model when the errors are generated from a long-memory process. Such a model arises due to the overmodelling of a situation involving long-memory data. Along with the classical least-squares estimator and restricted least-squares estimator, preliminary test least-squares estimator and shrinkage least-squares estimator are investigated in an asymptotic set-up and their relative performances are studied under contiguous alternatives. The contiguous alternatives under such dependence are fundamentally different from those under the independent errors case.  相似文献   

18.
The paper presents the essentials of the SURE model and the estimation of its parameters β and ω. Two alternative compact representations of the model are being used. The parameter β is estimated by least squares (LS), generalized least squares (GLS) and maximum likelihood (ML) (under normality). For ω two estimators are being considered, viz an LS-related estimator and a maximum likelihood estimator (under normality). Attention is being given to the study of asymptotic properties of all estimators examined. It turns out that the LS-related and ML estimators of ω follow the same asymptotic (normal) distribution. Efficiency comparisons for the various estimators of β conclude the paper.  相似文献   

19.
ABSTRACT

Despite the sizeable literature associated with the seemingly unrelated regression models, not much is known about the use of Stein-rule estimators in these models. This gap is remedied in this paper, in which two families of Stein-rule estimators in seemingly unrelated regression equations are presented and their large sample asymptotic properties explored and evaluated. One family of estimators uses a shrinkage factor obtained solely from the equation under study while the other has a shrinkage factor based on all the equations of the model. Using a quadratic loss measure and Monte-Carlo sampling experiments, the finite sample risk performance of these estimators is also evaluated and compared with the traditional feasible generalized least squares estimator.  相似文献   

20.
In this paper we propose Stein‐type shrinkage estimators for the parameter vector of a Poisson regression model when it is suspected that some of the parameters may be restricted to a subspace. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Furthermore, we consider three different penalty estimators: the LASSO, adaptive LASSO, and SCAD estimators and compare their relative performance with that of the shrinkage estimators. Monte Carlo simulation studies reveal that the shrinkage strategy compares favorably to the use of penalty estimators, in terms of relative mean squared error, when the number of inactive predictors in the model is moderate to large. The shrinkage and penalty strategies are applied to two real data sets to illustrate the usefulness of the procedures in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号