首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new family of distributions for count data, the so called zero-modified power series (ZMPS), which is an extension of the power series (PS) distribution family, whose support starts at zero. This extension consists in modifying the probability of observing zero of each PS distribution, enabling the new zero-modified distribution to appropriately accommodate data which have any amount of zero observations (for instance, zero-inflated or zero-deflated data). The Hurdle distribution version of the ZMPS distribution is presented. PS distributions included in the proposed ZMPS family are the Poisson, Generalized Poisson, Geometric, Binomial, Negative Binomial and Generalized Negative Binomial distributions. The paper also describes the properties and particularities of the new distribution family for count data. The distribution parameters are estimated via maximum likelihood method and the use of the new family is illustrated in three real data sets. We emphasize that the new distribution family can accommodate sets of count data without any previous knowledge on the characteristic of zero-inflation or zero-deflation present in the data.  相似文献   

2.
This article is concerned with the Markov-Pólya distribution and its links with the Katz family of distributions. The Katz family is defined through a first-order recursion of remarkable form; it (only) covers the Poisson, negative binomial and binomial distributions. The Markov-Pólya distribution arises in the study of certain urn or population models that incorporate (anti)contagion effects. The present work is motivated by questions and applications in actuarial sciences. First, the Markov-Pólya distribution is presented as a claim frequency model. This distribution is then shown to satisfy a Katz-like recursion. As a consequence, a simple recursion is derived for computing a compound sum distribution that generalizes the Panjer algorithm in risk theory. The Katz family is also obtained as a limit of the Markov-Pólya distribution. Finally, an observed frequency of car accidents is fitted by a Markov-Pólya distribution.  相似文献   

3.
We introduce a new family of integer-valued distributions by considering a tempered version of the Discrete Linnik law. The proposal is actually a generalization of the well-known Poisson–Tweedie law. The suggested family is extremely flexible since it contains a wide spectrum of distributions ranging from light-tailed laws (such as the Binomial) to heavy-tailed laws (such as the Discrete Linnik). The main theoretical features of the Tempered Discrete Linnik distribution are explored by providing a series of identities in law, which describe its genesis in terms of mixture Poisson distribution and compound Negative Binomial distribution—as well as in terms of mixture Poisson–Tweedie distribution. Moreover, we give a manageable expression and a suitable recursive relationship for the corresponding probability function. Finally, an application to scientometric data—which deals with the scientific output of the researchers of the University of Siena—is considered.  相似文献   

4.
Alberto Luceño 《Statistics》2013,47(3):261-267
This article analyses the broad family of discrete probability distributions generated by relating Prob (y) to Prob (y?1), …, Prob (y?n), for some n≥1, through a recursive equation. This family contains the binomial, negative binomial and Poisson distributions as well as the Katz family of distributions. In addition, the suggested family contains some convolutions of Poisson distributions and other generalized distributions, which provide models for Poisson overdispersion or underdispersion.  相似文献   

5.
The distribution function of a random sum can easily be computed iteratively when the distribution of the number of independent identically distributed elements in the sum is itself defined recursively. Classical estimation procedures for such recursive parametric families often require specific distributional assumptions (e.g. Poisson, Negative Binomial). The minimum distance estimator proposed here is an estimator within a larger parametric family. The estimator is consistent, efficient when the parametric family is truncated, and can be made either robust or asymptotically efficient when the parametric family has infinite range. Its asymptotic distribution is derived. A brief illustration with Automobile Insurance data is included.  相似文献   

6.
In this paper we consider spatial regression models for count data. We examine not only the Poisson distribution but also the generalized Poisson capable of modeling over-dispersion, the negative Binomial as well as the zero-inflated Poisson distribution which allows for excess zeros as possible response distribution. We add random spatial effects for modeling spatial dependency and develop and implement MCMC algorithms in $R$ for Bayesian estimation. The corresponding R library ‘spatcounts’ is available on CRAN. In an application the presented models are used to analyze the number of benefits received per patient in a German private health insurance company. Since the deviance information criterion is only appropriate for exponential family models, we use in addition the Vuong and Clarke test with a Schwarz correction to compare possibly non nested models. We illustrate how they can be used in a Bayesian context.  相似文献   

7.
This paper considers the first-order integer-valued autoregressive (INAR) process with Katz family innovations. This family of INAR processes includes a broad class of INAR(1) processes with Poisson, negative binomial, and binomial innovations, respectively, featuring equi-, over-, and under-dispersion. Its probabilistic properties such as ergodicity and stationarity are investigated and the formula of the marginal mean and variance is provided. Further, a statistical process control procedure based on the cumulative sum control chart is considered to monitor autocorrelated count processes. A simulation and real data analysis are conducted for illustration.  相似文献   

8.
Collings and Margolin(1985) developed a locally most powerful unbiased test for detecting negative binomial departures from a Poisson model, when the variance is a quadratic function of the mean. Kim and Park(1992) developed a locally most powerful unbiased test, when the variance is a linear function of the mean. It is found that a different mean-variance structure of a negative binomial derives a different locally optimal test statistic.

In this paper Collings and Margolin's and Kim and Park's results are unified and extended by developing a test for overdispersion in Poisson model against Katz family of distributions, Our setup has two extensions: First, Katz family of distributions is employed as an extension of the negative binomial distribution. Second, the mean-variance structure of the mixed Poisson model is given by σ2 = μ+cμr for arbitrary but fixed r. We derive a local score test for testing H0 : c = 0. Superiority of a new test is proved by the asymtotic relative efficiency as well as the simulation study.  相似文献   

9.
指数族分布是一类应用广泛的分布类,包括了泊松分布、Gamma分布、Beta分布、二项分布等常见分布.在非寿险中,索赔额或索赔次数过程常常被假定服从指数族分布,由于风险的非齐次性,指数族分布中的参数θ也为随机变量,假定服从指数族共轭先验分布.此时风险参数的估计落入了Bayes框架,风险参数θ的Bayes估计被表达“信度”形式.然而,在实际运用中,由于先验分布与样本分布中仍然含有结构参数,根据样本的边际分布的似然函数估计结构参数,从而获得风险参数的经验Bayes估计,最后证明了该经验Bayes估计是渐近最优的.  相似文献   

10.
A generalized linear empirical Bayes model is developed for empirical Bayes analysis of several means in natural exponential families. A unified approach is presented for all natural exponential families with quadratic variance functions (the Normal, Poisson, Binomial, Gamma, and two others.) The hyperparameters are estimated using the extended quasi-likelihood of Nelder and Pregibon (1987), which is easily implemented via the GLIM package. The accuracy of these estimates is developed by asymptotic approximation of the variance. Two data examples are illustrated.  相似文献   

11.
Poisson distributions are often used to show that the central limit theorem is valid even for discrete and for highly skewed distributions. It is not so commonly appreciated that they can also be used to demonstrate that, in some cases, very large sample sizes may not be enough to invoke the theorem. Binomial distributions can be used in a similar manner.  相似文献   

12.
Hewlett Packard's Advanced Scientific Calculator HP-28S has built in functions to compute the CDF's of Normal, Chi-square, t and F distributions. The paper shows how to use the HP-28S calculator to obtain the CDF of the Binomial and Poisson random variables using the built in functions UTPF and UTPC of HP-28S. Illustrative examples to obtain the exact confidence intervals of the Binomial and Poisson parameters with HP-28S are given.  相似文献   

13.
Recently, various studies have used the Poisson Pseudo-Maximal Likehood (PML) to estimate gravity specifications of trade flows and non-count data models more generally. Some papers also report results based on the Negative Binomial Quasi-Generalised Pseudo-Maximum Likelihood (NB QGPML) estimator, which encompasses the Poisson assumption as a special case. This note shows that the NB QGPML estimators that have been used so far are unappealing when applied to a continuous dependent variable which unit choice is arbitrary, because estimates artificially depend on that choice. A new NB QGPML estimator is introduced to overcome this shortcoming.  相似文献   

14.
Time series of counts occur in many fields of practice, with the Poisson distribution as a popular choice for the marginal process distribution. A great variety of serial dependence structures of stationary count processes can be modelled by the INARMA family. In this article, we propose a new approach to the INMA(q) family in general, including previously known results as special cases. In the particular case of Poisson marginals, we will derive new results concerning regression properties and the serial dependence structure of INAR(1) and INMA(q) models. Finally, we present explicit expressions for the distribution of jumps in such processes.  相似文献   

15.
This paper presents a simple procedure for estimating the parameters of bivariate discrete distributions. The procedure uses the marginal means and certain observed frequencies in one or more conditional distributions. The bivariate Poisson and Negative Binomial distributions are used as illustrative examples, Parameter estimators are derived and asymptotic efficiencies are examined for various parameter values.  相似文献   

16.
The authors study the asymptotic behaviour of the likelihood ratio statistic for testing homogeneity in the finite mixture models of a general parametric distribution family. They prove that the limiting distribution of this statistic is the squared supremum of a truncated standard Gaussian process. The autocorrelation function of the Gaussian process is explicitly presented. A re‐sampling procedure is recommended to obtain the asymptotic p‐value. Three kernel functions, normal, binomial and Poisson, are used in a simulation study which illustrates the procedure.  相似文献   

17.
A general class of mixed Poisson regression models is introduced. This class is based on a mixing between the Poisson distribution and a distribution belonging to the exponential family. With this, we unified some overdispersed models which have been studied separately, such as negative binomial and Poisson inverse gaussian models. We consider a regression structure for both the mean and dispersion parameters of the mixed Poisson models, thus extending, and in some cases correcting, some previous models considered in the literature. An expectation–maximization (EM) algorithm is proposed for estimation of the parameters and some diagnostic measures, based on the EM algorithm, are considered. We also obtain an explicit expression for the observed information matrix. An empirical illustration is presented in order to show the performance of our class of mixed Poisson models. This paper contains a Supplementary Material.  相似文献   

18.
A common feature for compound Poisson and Katz distributions is that both families may be viewed as generalizations of the Poisson law. In this paper, we present a unified approach in testing the fit to any distribution belonging to either of these families. The test involves the probability generating function, and it is shown to be consistent under general alternatives. The asymptotic null distribution of the test statistic is obtained, and an effective bootstrap procedure is employed in order to investigate the performance of the proposed test with real and simulated data. Comparisons with classical methods based on the empirical distribution function are also included.  相似文献   

19.
Generalized method of moments (GMM) is used to develop tests for discriminating discrete distributions among the two-parameter family of Katz distributions. Relationships involving moments are exploited to obtain identifying and over-identifying restrictions. The asymptotic relative efficiencies of tests based on GMM are analyzed using the local power approach and the approximate Bahadur efficiency. The paper also gives results of Monte Carlo experiments designed to check the validity of the theoretical findings and to shed light on the small sample properties of the proposed tests. Extensions of the results to compound Poisson alternative hypotheses are discussed.  相似文献   

20.
Janardan (1973) introduced the generalized Polya Eggenberger family of distributions (GPED) as a limiting distribution of the generalized Markov-Polya distribution (GMPD). Janardan and Rao (1982) gave a number of characterizing properties of the generalized Markov-Polya and generalized Polya Eggenberger distributions. Here, the GPED family characterized by four parameters, is formally defined and studied. The probability generating function, its moments, and certain recurrence relations with the moments are provided. The Lagrangian Katz family of distributions (Consul and Famoye (1996)) is shown to be a sub-class of the family of GPED (or GPED 1 ) as it is called in this paper). A generalized Polya Eggenberger distribution of the second kind (GPED 2 ) is also introduced and some of it's properties are given. Recurrence relations for the probabilities of GPED 1 and GPED 2 are given. A number of other structural and characteristic properties of the GPED 1 are provided, from which the properties of Lagrangian Katz family follow. The parameters of GMPD 1 are estimated by the method of moments and the maximum likelihood method. An application is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号