首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new four-parameter class of generalized Lindley (GL) distribution called the beta-generalized Lindley (BGL) distribution is proposed. This class of distributions contains the beta-Lindley, GL and Lindley distributions as special cases. Expansion of the density of the BGL distribution is obtained. The properties of these distributions, including hazard function, reverse hazard function, monotonicity property, shapes, moments, reliability, mean deviations, Bonferroni and Lorenz curves are derived. Measures of uncertainty such as Renyi entropy and s-entropy as well as Fisher information are presented. Method of maximum likelihood is used to estimate the parameters of the BGL and related distributions. Finally, real data examples are discussed to illustrate the applicability of this class of models.  相似文献   

2.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

3.
In this paper, we propose an extension of the Gompertz-Makeham distribution. This distribution is called the transmuted Gompertz-Makeham (TGM). The new model which can handle bathtub-shaped, increasing, increasing-constant and constant hazard rate functions. This property makes TGM is useful in survival analysis. Various statistical and reliability measures of the model are obtained, including hazard rate function, moments, moment generating function (mgf), quantile function, random number generating, skewness, kurtosis, conditional moments, mean deviations, Bonferroni curve, Lorenz curve, Gini index, mean inactivity time, mean residual lifetime and stochastic ordering; we also obtain the density of the ith order statistic. Estimation of the model parameters is justified by the method of maximum likelihood. An application to real data demonstrates that the TGM distribution can provides a better fit than some other very well known distributions.  相似文献   

4.
A new class of distributions called the log-logistic Weibull–Poisson distribution is introduced and its properties are explored. This new distribution represents a more flexible model for lifetime data. Some statistical properties of the proposed distribution including the expansion of the density function, quantile function, hazard and reverse hazard functions, moments, conditional moments, moment generating function, skewness and kurtosis are presented. Mean deviations, Bonferroni and Lorenz curves, Rényi entropy and distribution of the order statistics are derived. Maximum likelihood estimation technique is used to estimate the model parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators and width of the confidence interval for each parameter and finally applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

5.
According to Ross, any system can be represented either as a series arrangement of parallel structures or as a parallel arrangement of series structures. Motivated by this, we propose new three-parameter lifetime distributions by compounding geometric, power series, and exponential distributions. The distributions can allow for decreasing, increasing, bathtub-shaped, and upside down bathtub-shaped hazard rates. A mathematical treatment of the new distributions is provided including expressions for their density functions, Shannon and Rényi entropies, mean residual life functions, hazard rate functions, quantiles, and moments. The method of maximum likelihood is used for estimating parameters. Five of the new distributions are studied in detail. Finally, two illustrative data examples and a sensitivity analysis are presented.  相似文献   

6.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

7.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

8.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

9.
In this article, the discrete analog of Weibull geometric distribution is introduced. Discrete Weibull, discrete Rayleigh, and geometric distributions are submodels of this distribution. Some basic distributional properties, hazard function, random number generation, moments, and order statistics of this new discrete distribution are studied. Estimation of the parameters are done using maximum likelihood method. The applications of the distribution is established using two datasets.  相似文献   

10.
We introduce a three-parameter extension of the exponential distribution which contains as sub-models the exponential, logistic-exponential and Marshall-Olkin exponential distributions. The new model is very flexible and its associated density function can be decreasing or unimodal. Further, it can produce all of the four major shapes of the hazard rate, that is, increasing, decreasing, bathtub and upside-down bathtub. Given that closed-form expressions are available for the survival and hazard rate functions, the new distribution is quite tractable. It can be used to analyze various types of observations including censored data. Computable representations of the quantile function, ordinary and incomplete moments, generating function and probability density function of order statistics are obtained. The maximum likelihood method is utilized to estimate the model parameters. A simulation study is carried out to assess the performance of the maximum likelihood estimators. Two actual data sets are used to illustrate the applicability of the proposed model.  相似文献   

11.
The weighted distributions provide a comprehensive understanding by adding flexibility in the existing standard distributions. In this article, we considered the weighted Lindley distribution which belongs to the class of the weighted distributions and investigated various its properties. Although, our main focus is the Bayesian analysis however, stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics derivations are obtained first time for the said distribution. Different types of loss functions are considered; the Bayes estimators and their respective posterior risks are computed and compared. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also analysed. The Lindley approximation and the importance sampling are described for estimation of parameters. A simulation study is designed to inspect the effect of sample size on the estimated parameters. A real-life application is also presented for the illustration purpose.  相似文献   

12.
A simple adjustment to parametric failure-time distributions, which allows for much greater flexibility in the shape of the hazard-rate function, is considered. Analytical expressions for the distributions of the power-law adjusted Weibull, gamma, log-gamma, generalized gamma, lognormal, and Pareto distributions are given. Most of these allow for bathtub-shaped and other multi-modal forms of the hazard rate. The new distributions are fitted to real failure-time data which exhibit a multi-modal hazard-rate function and the fits are compared.  相似文献   

13.
We consider the progressively Type-II censored competing risks model based on sequential order statistics. It is assumed that the latent failure times are independent and the failure of each unit influences the lifetime distributions of the latent failure times of surviving units. We provide explicit expressions for the likelihood function of the available data under the conditional proportional hazard rate (CPHR) and the power trend conditional proportional hazard rate (PTCPHR) models. Under CPHR and PTCPHR models and assumption that the baseline distributions of the latent failure times are exponential, classical and Bayesian estimates of the unknown parameters are provided. Monte Carlo simulations are then performed for illustrative purposes. Finally, two datasets are analyzed.  相似文献   

14.
The problem of estimation of parameters in hazard rate models with a change-point is considered. An interesting feature of this problem is that the likelihood function is unbounded. A maximum likelihood estimator of the change-point subject to a natural constraint is proposed, which is shown to be consistent.The limiting distributions are also derived.  相似文献   

15.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

16.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

17.
The cumulative incidence function is of great importance in the analysis of survival data when competing risks are present. Parametric modeling of such functions, which are by nature improper, suggests the use of improper distributions. One frequently used improper distribution is that of Gompertz, which captures only monotone hazard shapes. In some applications, however, subdistribution hazard estimates have been observed with unimodal shapes. An extension to the Gompertz distribution is presented which can capture unimodal as well as monotone hazard shapes. Important properties of the proposed distribution are discussed, and the proposed distribution is used to analyze survival data from a breast cancer clinical trial.  相似文献   

18.
We study a new family of continuous distributions with two extra shape parameters called the Burr generalized family of distributions. We investigate the shapes of the density and hazard rate function. We derive explicit expressions for some of its mathematical quantities. The estimation of the model parameters is performed by maximum likelihood. We prove the flexibility of the new family by means of applications to two real data sets. Furthermore, we propose a new extended regression model based on the logarithm of the Burr generalized distribution. This model can be very useful to the analysis of real data and provide more realistic fits than other special regression models.  相似文献   

19.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

20.
A new three-parameter distribution with decreasing, increasing, and bathtub-shaped hazard rates obtained by compounding geometric, power series, and exponential distributions is introduced. It includes some well-known distributions as particular cases. Various mathematical properties of the new distribution as well as details of the maximum likelihood estimation and a sensitivity analysis for its parameters are presented. Finally, two real data applications are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号