首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, we consider James–Stein shrinkage and pretest estimation methods for time series following generalized linear models when it is conjectured that some of the regression parameters may be restricted to a subspace. Efficient estimation strategies are developed when there are many covariates in the model and some of them are not statistically significant. Statistical properties of the pretest and shrinkage estimation methods including asymptotic distributional bias and risk are developed. We investigate the relative performances of shrinkage and pretest estimators with respect to the unrestricted maximum partial likelihood estimator (MPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the unrestricted MPLE when the number of significant covariates exceeds two. Monte Carlo simulation experiments were conducted for different combinations of inactive covariates and the performance of each estimator was evaluated in terms of its mean squared error. The practical benefits of the proposed methods are illustrated using two real data sets.  相似文献   

2.
In this article, we consider a family of linear calibration estimators arising from inverse estimator and analyze its properties employing the small disturbance asymptotic theory. The asymptotic approximations for bias and mean squared error of this family are compared with the corresponding results for classical and inverse estimators, whose properties are also compared.  相似文献   

3.
Theobald (1974) compares Ordinary Least Squares and Ridge Regression estimators of regression parameters using a generalized mean squared error criterion. This paper presents the generalized mean squared error of a Principal Components Regression estimator and comparisons are made with each of the above estimators. In general the choice of which estimator to use depends on the magnitude and the orientation of the unknown parameter vector.  相似文献   

4.
In this article, we have developed asymptotic theory for the simultaneous estimation of the k means of arbitrary populations under the common mean hypothesis and further assuming that corresponding population variances are unknown and unequal. The unrestricted estimator, the Graybill-Deal-type restricted estimator, the preliminary test, and the Stein-type shrinkage estimators are suggested. A large sample test statistic is also proposed as a pretest for testing the common mean hypothesis. Under the sequence of local alternatives and squared error loss, we have compared the asymptotic properties of the estimators by means of asymptotic distributional quadratic bias and risk. Comprehensive Monte-Carlo simulation experiments were conducted to study the relative risk performance of the estimators with reference to the unrestricted estimator in finite samples. Two real-data examples are also furnished to illustrate the application of the suggested estimation strategies.  相似文献   

5.
This paper introduces two estimators, a boundary corrected minimum variance kernel estimator based on a uniform kernel and a discrete frequency polygon estimator, for the cell probabilities of ordinal contingency tables. Simulation results show that the minimum variance boundary kernel estimator has a smaller average sum of squared error than the existing boundary kernel estimators. The discrete frequency polygon estimator is simple and easy to interpret, and it is competitive with the minimum variance boundary kernel estimator. It is proved that both estimators have an optimal rate of convergence in terms of mean sum of squared error, The estimators are also defined for high-dimensional tables.  相似文献   

6.

In this paper, we discuss an estimation problem of the mean in the inverse Gaussian distribution with a known coefficient of variation. Two types of linear estimators for the mean, the linear minimum variance unbiased estimator and the linear minimum mean squared error estimator, are constructed by using the squared error loss function and their properties are examined. It is observed that, for small samples the performance of the proposed estimators is better than that of the maximum likelihood estimator, when the coefficient of variation is large.  相似文献   

7.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

8.
This paper provides guidance in choosing k1 andk2 of the double k-class (KK) estimator such that it will improve upon both the ordinary least squares (OLS) and Stein-rule (SR) estimators in predictive mean squared error (PMSE). Asymptotic bias and mean squared error (MSE) results are derived for nonnormal and other cases. A simulation compares the KK estimator with the OLS and SR estimators.  相似文献   

9.
Abstract

The availability of some extra information, along with the actual variable of interest, may be easily accessible in different practical situations. A sensible use of the additional source may help to improve the properties of statistical techniques. In this study, we focus on the estimators for calibration and intend to propose a setup where we reply only on first two moments instead of modeling the whole distributional shape. We have proposed an estimator for linear calibration problems and investigated it under normal and skewed environments. We have partitioned its mean squared error into intrinsic and estimation components. We have observed that the bias and mean squared error of the proposed estimator are function of four dimensionless quantities. It is to be noticed that both the classical and the inverse estimators become the special cases of the proposed estimator. Moreover, the mean squared error of the proposed estimator and the exact mean squared error of the inverse estimator coincide. We have also observed that the proposed estimator performs quite well for skewed errors as well. The real data applications are also included in the study for practical considerations.  相似文献   

10.
The small-sample bias and root mean squared error of several distribution-free estimators of the variance of the sample median are examined. A new estimator is proposed that is easy to compute and tends to have the smallest bias and root mean squared error.  相似文献   

11.
In this paper a new class of shrinkage estimators has been introduced for the shape parameter in an independently identically distributed two-parameterWeibull model under censored sampling. The main idea is to incorporate the prior guessed value by correcting the standard estimator, which is essentially an unbiased estimator, with optimally weighted ratios of the guessed value and the standard estimator, instead of considering a convex combination of the standard estimator and the difference of the guessed value and the standard estimator. The resulting estimator dominates the standard estimator in a surprisingly large neighborhood of the guessed value. The suggested estimator has also been compared with the minimum mean squared error estimator and a class of estimators suggested by Singh and Shukla in IAPQR Trans 25(2), 107–118, 2000. It is found that the suggested class of estimators has lesser bias as well as lesser mean squared error than its competitors subject to certain conditions.   相似文献   

12.
S. E. Ahmed 《Statistics》2013,47(3):265-277
The problem of pooling means is considered based on two samples in presence of the uncertain prior information that these samples are taken from possibly identical populations. Two discrete models, Poisson and binomial are considered in particular. Three estimators, i.e. the unrestricted estimator, shrinkage restricted estimator and estimators based on preliminary test are proposed. Their asymptotic mean squared errors are derived and compared. It is demonstrated via asymptotic results that the range of the parameter space in which shrinkage preliminary test estimator dominates the unrestricted estimator is wider than that of the usual preliminary test estimator. A Monte Carlo study for Poisson model is presented to compare the performance of the estimators for small samples.  相似文献   

13.

This paper is concerned with properties (bias, standard deviation, mean square error and efficiency) of twenty six estimators of the intraclass correlation in the analysis of binary data. Our main interest is to study these properties when data are generated from different distributions. For data generation we considered three over-dispersed binomial distributions, namely, the beta-binomial distribution, the probit normal binomial distribution and a mixture of two binomial distributions. The findings regarding bias, standard deviation and mean squared error of all these estimators, are that (a) in general, the distributions of biases of most of the estimators are negatively skewed. The biases are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution; (b) the standard deviations are smallest when data are generated from the beta-binomial distribution; and (c) the mean squared errors are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution. Of the 26, nine estimators including the maximum likelihood estimator, an estimator based on the optimal quadratic estimating equations of Crowder (1987), and an analysis of variance type estimator is found to have least amount of bias, standard deviation and mean squared error. Also, the distributions of the bias, standard deviation and mean squared error for each of these estimators are, in general, more symmetric than those of the other estimators. Our findings regarding efficiency are that the estimator based on the optimal quadratic estimating equations has consistently high efficiency and least variability in the efficiency results. In the important range in which the intraclass correlation is small (≤0 5), on the average, this estimator shows best efficiency performance. The analysis of variance type estimator seems to do well for larger values of the intraclass correlation. In general, the estimator based on the optimal quadratic estimating equations seems to show best efficiency performance for data from the beta-binomial distribution and the probit normal binomial distribution, and the analysis of variance type estimator seems to do well for data from the mixture distribution.  相似文献   

14.
This paper investigates the predictive mean squared error performance of a modified double k-class estimator by incorporating the Stein variance estimator. Recent studies show that the performance of the Stein rule estimator can be improved by using the Stein variance estimator. However, as we demonstrate below, this conclusion does not hold in general for all members of the double k-class estimators. On the other hand, an estimator is found to have smaller predictive mean squared error than the Stein variance-Stein rule estimator, over quite large parts of the parameter space.  相似文献   

15.
Nonparametric and parametric estimators are combined to minimize the mean squared error among their linear combinations. The combined estimator is consistent and for large sample sizes has a smaller mean squared error than the nonparametric estimator when the parametric assumption is violated. If the parametric assumption holds, the combined estimator has a smaller MSE than the parametric estimator. Our simulation examples focus on mean estimation when data may follow a lognormal distribution, or can be a mixture with an exponential or a uniform distribution. Motivating examples illustrate possible application areas.  相似文献   

16.
An estimator for location, given a sample of only four or five observations, is proposed. The underlying distribution on of the sample may (with probability p) be contaminated by an outlier from a rightly-skewed distribution. The estimator minimizes the maximum mean squared error over all values of p. In fact, there exists an estimator which is unbiased in both the outlier - free and extreme-outlier cases, but its mean square error is substantially higher than the mean squared error for the minimax estimator. Mean squared errors for various underlying distributional situations are calculated and compared with those of other location estimators such as the mean and the median.  相似文献   

17.
The lasso procedure is an estimator‐shrinkage and variable selection method. This paper shows that there always exists an interval of tuning parameter values such that the corresponding mean squared prediction error for the lasso estimator is smaller than for the ordinary least squares estimator. For an estimator satisfying some condition such as unbiasedness, the paper defines the corresponding generalized lasso estimator. Its mean squared prediction error is shown to be smaller than that of the estimator for values of the tuning parameter in some interval. This implies that all unbiased estimators are not admissible. Simulation results for five models support the theoretical results.  相似文献   

18.
In this paper an estimator of the finite population mean using auxiliary information in sample surveys has been proposed. The bias and mean squared error are obtained under large sample approximation. It has been shown that the proposed estimator performs better than some recently published estimators.  相似文献   

19.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

20.
Four estimators of the prediction mean squared error (MSB) of an estimated finite population total for a zero-one characteristic are examined. The characteristic associated with each population unit is modeled as the realization of a Bernoulli random variable whose expected value is a nonlinear function of a parameter vector and a set of known auxiliary variables. To compare the estimators, a simulation study is conducted using a population of hospitals. The MSB estimator Implied by the form of the assumed model underestimates the mean squared error in each of the cases studied and produces confidence lntervals with less than the nominal coverage probabilities. Of the three alternative MSE estimators presented, a linear approximation to the jackknife produces the best results and improves upon the model-specific estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号