首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
{Xn, n≥1} are independent and identically distributed random variables with continuous distribution function F(x). For j=1,…,n, Xj is called a near-record up to time n if Xj ∈ (Mna, Mn], where Mn = max1≤j≤n {Xj} and a is a positive constant. Let Zn(a) denote the number of near-records after, and including the maximum observation of the sequence. In this paper, the distributional results of Zn(a) are considered and its asymptotic behaviours are studied.  相似文献   

2.
Let X1Y1,…, Yn be independent random variables. We characterize the distributions of X and Yj satisfying the equation {X+Y1++Yn}=dX, where {Z} denotes the fractional part of a random variable Z. In the case of full generality, either X is uniformly distributed on [0,1), or Yj has.a shifted lattice distribution and X is shift-invariant. We also give a characterization of shift-invariant distributions. Finally, we consider some special cases of this equation.  相似文献   

3.
With a set X1, X2, .... Xn n random variables, a graph is associated whose vertices are the integers 1,2,..., n and whose edges represent those pairs i and j for which the events {Xi>X} and {Xj>X} do not become “almost independent” for “large X”. With a variety of assumption on the edge set of the graph, the asymptotic distribution of the extremes of the Xj, when properly normalized, is determined. This refines the earlier result of the present author on this kind of dependence, and extends and unifies several known dependent extreme value models.  相似文献   

4.
A sequence {Xn, n≥1} of independent and identically distributed random variables with continuous cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max {X1, X2, ..., Xj?1}. We define L(n)=min {j|j>L(n?1), Xj>XL(n?1)}, with L(0)=1. Let Zn,m=XL(n)?XL(m), n>m≥0. Some characterizations of the exponential distribution are considered in terms of Zn,m and XL(m).  相似文献   

5.
Let X1,…,X2n be independent and identically distributed copies of the non-negative integer valued random variable X distributed according to the unknown frequency function f(x). A total of 2n disjoint sequences of urns, each consisting of k urns, are given. Xj balls are placed in urn sequence j (1 ≤ j ≤ 2n). Each ball is placed in an urn of a given sequence with a certain known probability independently of the other balls. The variables X1,…,X2n are not observed; rather we observe whether certain pairs of urns are both empty or not. Our object is to estimate the mean μ of the number of balls X. Two different kinds of estimators of μ are investigated. One of the estimators studied is a method of moments type estimator while the other is motivated by the maximum likelihood principle. These estimators are compared on the basis of their asymptotic mean squared error as k tends to infinity. An application of these results to a problem in genetics involved with estimating codon substitution rates is discussed.  相似文献   

6.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

7.
A sequence {Xn, n≥1} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max(X1,…,Xj?1), j>1. Let {XL(n), n≥0} with L(o)=1 be the sequence of such record values and Zn,n?1=XL(n)–XL(n?1). Some properties of Zn,n?1 are studied and characterizations of the exponential distribution are discussed in terms of the expectation and the hazard rate of zn,n?1.  相似文献   

8.
In this paper, we obtain some results for the asymptotic behavior of the tail probability of a random sum Sτ = ∑τk = 1Xk, where the summands Xk, k = 1, 2, …, are conditionally dependent random variables with a common subexponential distribution F, and the random number τ is a non negative integer-valued random variable, independent of {Xk: k ? 1}.  相似文献   

9.
Let X= (X1,…, Xk)’ be a k-variate (k ≥ 2) normal random vector with unknown population mean vector μ = (μ1 ,…, μk)’ and covariance matrix Σ of order k and let μ[1] ≤ … ≤ μ[k] be the ordered values of the μ ’ s. No prior knowledge of the pairing of the μ[i] with the Xj. (or μ[i] with the σj 2) is assumed for any i and j (1 ≤ i, j ≤ k). Based on a random sample of N independent vector observations on X, this paper considers both upper and lower (one-sided) and two-sided 100γ% (0 < γ < 1) confidence intervals for μ[k] and μ[1], the largest and the smallest mean, respectively, when Σ is known and when Σ is equal to σ2R with common unknown variance σ2 > 0 and correlation matrix R known, respectively. An optimum two-sided confidence interval via finding the shortest length from this class is also considered. Necessary tables and computer program to actually apply these procedures are provided.  相似文献   

10.
In this paper a new test is introduced which checks the linearity assumption in bivariate regression models. It is based on the idea that the slope through the data points (xi,yi) and (xj,yj) should be approximately equal to the slope through the data points (xj,yj) and (xk,yk) for xi<xj<xk under the assumption that the random variable Y is a linear function of the independent variable x. This idea is formalized in a U-statistic on which the test for linearity is based. The test performs well for the considered case of power transformations, which is of high practical relevance.  相似文献   

11.
This paper deals with √n-consistent estimation of the parameter μ in the RCAR(l) model defined by the difference equation Xj=(μ+Uj)Xj-l+ej (jε Z), where {ej: jε Z} and {Uj: jε Z} are two independent sets of i.i.d. random variables with zero means, positive finite variances and E[(μ+U1)2] < 1. A class of asymptotically normal estimators of μ indexed by a family of bounded measurable functions is introduced. Then an estimator is constructed which is asymptotically equivalent to the best estimator in that class. This estimator, asymptotically equivalent to the quasi-maximum likelihood estimator derived in Nicholls & Quinn (1982), is much simpler to calculate and is asymptotically normal without the additional moment conditions those authors impose.  相似文献   

12.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

13.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

14.
Let {X j , j ≥ 1} be a strictly stationary negatively or positively associated sequence of real valued random variables with unknown distribution function F(x). On the basis of the random variables {X j , j ≥ 1}, we propose a smooth recursive kernel-type estimate of F(x), and study asymptotic bias, quadratic-mean consistency and asymptotic normality of the recursive kernel-type estimator under suitable conditions.  相似文献   

15.
Assume that there are two types of insurance contracts in an insurance company, and the ith related claims are denoted by {Xij, j ? 1}, i = 1, 2. In this article, the asymptotic behaviors of precise large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j are investigated, and under several assumptions, some corresponding asymptotic formulas are obtained.  相似文献   

16.
Let X be a po-normal random vector with unknown µ and unknown covariance matrix ∑ and let X be partitioned as X = (X (1), …, X (r))′ where X(j)is a subvector of X with dimension pjsuch that ∑r j=1Pj = P0. Some admissible tests are derived for testing H0: μ = 0 versus H1: μ ¦0 based on a sample drawn from the whole vector X of dimension p and r additional samples drawn from X(1), X(2), …, X(r) respectively, All (r+1) samples are assumed to be independent. The distribution of some of the tests' statistics involved are also derived.  相似文献   

17.
We consider the random variable X that is not Gaussian but for which X c , where c = (2k + 1)/(2j + 1) with k, j ? {0, 1,…}, is approximately Gaussian. A variable of this type is used to model the errors made by meteorologists when forecasting temperatures.  相似文献   

18.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

19.
A paramecer-free Bernstein-type upper bound is derived for the probability that the sum S of n i.i.d, unimodal random variables with finite support, X1 ,X2,…,Xn, exceeds its mean E(S) by the positive value nt. The bound for P{S - nμ ≥ nt} depends on the range of the summands, the sample size n, the positive number t, and the type of unimodality assumed for Xi. A two-sided Gauss-type probability inequality for sums of strongly unimodal random variables is also given. The new bounds are contrasted to Hoeffding's inequality for bounded random variables and to the Bienayme-Chebyshev inequality. Finally, the new inequalities are applied to a classic probability inequality example first published by Savage (1961).  相似文献   

20.
Let Xi:j denote the ith order statistic of a random sample of size j from a continuous life distribution. We show that if Xk:n, is IFR, IFRA, NBU, or DMRL, so are Xk+1:n, Xk+1:n?1 and Xk+1:n+1. Further we show that, in the first three cases, Xk+1:n+2 also shares the corresponding property if k ≤ (n+3)/2. We also present dual results for DFR, DFRA and NWU classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号