首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

2.
3.
Let [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} denote the best linear unbiased estimators of a given vector of parametric functions \varveck = \varvecKb{\varvec{\kappa} = \varvec{K\beta}} in the general linear models M = {\varvecy, \varvecX\varvecb, s2\varvecV}{{\mathcal M} = \{\varvec{y},\, \varvec{X\varvec{\beta}},\, \sigma^2\varvec{V}\}} and Mr = {\varvecy, \varvecX\varvecb | \varvecR \varvecb = \varvecr, s2\varvecV}{{\mathcal M}_r = \{\varvec{y},\, \varvec{X}\varvec{\beta} \mid \varvec{R} \varvec{\beta} = \varvec{r},\, \sigma^2\varvec{V}\}}, respectively. A bound for the Euclidean distance between [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} is expressed by the spectral distance between the dispersion matrices of the two estimators, and the difference between sums of squared errors evaluated in the model M{{\mathcal M}} and sub-restricted model Mr*{{\mathcal M}_r^*} containing an essential part of the restrictions \varvecR\varvecb = \varvecr{\varvec{R}\varvec{\beta} = \varvec{r}} with respect to estimating \varveck{\varvec{\kappa}}.  相似文献   

4.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

5.
A sequence of independent random variables {Zn:n≥ 1} with unknown probability distributions is considered and the problem of estimating their expectations {Mn+1: n≥ 1} is examined. The estimation of Mn+1 is based on a finite set {zk:1≤kn}, each zk being an observed value of Zk, 1 ≤kn, and also based on the assumption that {Mn:n≥ 1} follows an unknown trend of a specified form.  相似文献   

6.
Summary Let , whereX i are i.i.d. random variables with a finite variance σ2 and is the usual estimate of the mean ofX i. We consider the problem of finding optimal α with respect to the minimization of the expected value of |S 2(σ)−σ2|k for variousk and with respect to Pitman's nearness criterion. For the Gaussian case analytical results are obtained and for some non-Gaussian cases we present Monte Carlo results regarding Pitman's criteron. This research was supported by Science Fund of Serbia, grant number 04M03, through Mathematical Institute, Belgrade.  相似文献   

7.
We consider the situation where one wants to maximise a functionf(θ,x) with respect tox, with θ unknown and estimated from observationsy k . This may correspond to the case of a regression model, where one observesy k =f(θ,x k )+ε k , with ε k some random error, or to the Bernoulli case wherey k ∈{0, 1}, with Pr[y k =1|θ,x k |=f(θ,x k ). Special attention is given to sequences given by , with an estimated value of θ obtained from (x1, y1),...,(x k ,y k ) andd k (x) a penalty for poor estimation. Approximately optimal rules are suggested in the linear regression case with a finite horizon, where one wants to maximize ∑ i=1 N w i f(θ, x i ) with {w i } a weighting sequence. Various examples are presented, with a comparison with a Polya urn design and an up-and-down method for a binary response problem.  相似文献   

8.
Estimation of a normal mean relative to balanced loss functions   总被引:3,自引:0,他引:3  
LetX 1,…,X nbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function, % MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean % MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form % MathType!End!2!1! under % MathType!End!2!1!. We also consider the weighted balanced loss function, % MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =e θ .  相似文献   

9.
In 1973 Balestra examined the linear model y=XB+u, where u is a normally distributed disturbance vector, with variance matrix Ω. Ω has spectral decomposition \(\sum\limits_{i = 1}^r {\lambda _i M_i } \) , and the matrices Mi are known. Estimation of ω is thus equivalent with estimation of the λi. Balestra presented the best quadratic unbiased estimator of λi. In the present paper a derivation will be given which is based on a procedure developed by this writer (1980).  相似文献   

10.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

11.
Summary Letg(x) andf(x) be continuous density function on (a, b) and let {ϕj} be a complete orthonormal sequence of functions onL 2(g), which is the set of squared integrable functions weighted byg on (a, b). Suppose that over (a, b). Given a grouped sample of sizen fromf(x), the paper investigates the asymptotic properties of the restricted maximum likelihood estimator of density, obtained by setting all but the firstm of the ϑj’s equal to0. Practical suggestions are given for performing estimation via the use of Fourier and Legendre polynomial series. Research partially supported by: CNR grant, n. 93. 00837. CT10.  相似文献   

12.
The problems of estimating the reliability function and Pr{X1+...+Xk ≤ Y} are considered. The random variables X’s and Y are assumed to follow binomial and Poisson distributions. Classical estimators available in the literature are discussed and Bayes estimators are derived. In order to obtain the estimators of these parametric functions, the basic role is played by the estimators of factorial moments of the two distributions.  相似文献   

13.
Hilmar Drygas 《Statistics》2013,47(2):211-231
This paper deals with the existence of best quadratic unbiased estimators in variance covariance component models. It extends and unifies results previously obtained by Seely, Zyskind, Klonecki, Zmy?lony, Gnot, Kleffe and Pincus. The author considers a quasinormally distributed random vector y such that Ey = , Cov yL, where L is a linear space of symmetric square matrices. Conditions for the existence of a BLUE of Ey and a BQUE of Cov y (Eyy′) are investigated. A BLUE exists iff symmetry conditions for certain matrices are met while a BQUE exists iff some modified quadratic subspace conditions are met. At the end of the paper three examples are studied in which all these conditions are met: The Random Coefficient Regression Model, the multivariate linear model and the Behrens-Fisher model. The proofs of the theorems are obtained by considering linear model in y and yy′, respectively.  相似文献   

14.
Suppose there are k 1 (k 1 ≥ 1) test treatments that we wish to compare with k 2 (k 2 ≥ 1) control treatments. Assume that the observations from the ith test treatment and the jth control treatment follow a two-parameter exponential distribution and , where θ is a common scale parameter and and are the location parameters of the ith test and the jth control treatment, respectively, i = 1, . . . ,k 1; j = 1, . . . ,k 2. In this paper, simultaneous one-sided and two-sided confidence intervals are proposed for all k 1 k 2 differences between the test treatment location and control treatment location parameters, namely , and the required critical points are provided. Discussions of multiple comparisons of all test treatments with the best control treatment and an optimal sample size allocation are given. Finally, it is shown that the critical points obtained can be used to construct simultaneous confidence intervals for Pareto distribution location parameters.  相似文献   

15.
The linear hypothesis test procedure is considered in the restricted linear modelsM r = {y, Xβ |Rβ = 0, σ 2V} andM r * = {y, Xβ |ARβ = 0, σ 2V}. Necessary and sufficient conditions are derived under which the statistic providing anF-test for the linear hypothesisH 0:Kβ=0 in the modelM r * (Mr) continues to be valid in the modelM r (M r * ); the results obtained cover the case whereM r * is replaced by the general Gauss-Markov modelM = {y, Xβ, σ 2V}.  相似文献   

16.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

17.
We present a decomposition of the correlation coefficient between xt and xt?k into three terms that include the partial and inverse autocorrelations. The first term accounts for the portion of the autocorrelation that is explained by the inner variables {xt?1 , xt?2 , …, x t? k+1}, the second one measures the portion explained by the outer variables {x t+1, x t+2, } ∪ {x t?k?1, x t?k?2,…} and the third term measures the correlation between x t and xt?k given all other variables. These terms, squared and summed, can form the basis of three portmanteau-type tests that are able to detect both deviation from white noise and lack of fit of an entertained model. Quantiles of their asymptotic sample distributions are complicated to derive at an adequate level of accuracy, so they are approximated using the Monte Carlo method. A simulation experiment is carried out to investigate significance levels and power of each test, and compare them to the portmanteau test.  相似文献   

18.
Letx i(1)≤x i(2)≤…≤x i(ri) be the right-censored samples of sizesn i from theith exponential distributions $\sigma _i^{ - 1} exp\{ - (x - \mu _i )\sigma _i^{ - 1} \} ,i = 1,2$ where μi and σi are the unknown location and scale parameters respectively. This paper deals with the posteriori distribution of the difference between the two location parameters, namely μ21, which may be represented in the form $\mu _2 - \mu _1 \mathop = \limits^\mathcal{D} x_{2(1)} - x_{1(1)} + F_1 \sin \theta - F_2 \cos \theta $ where $\mathop = \limits^\mathcal{D} $ stands for equal in distribution,F i stands for the central F-variable with [2,2(r i?1)] degrees of freedom and $\tan \theta = \frac{{n_2 s_{x1} }}{{n_1 s_{x2} }}, s_{x1} = (r_1 - 1)^{ - 1} \left\{ {\sum\limits_{j = 1}^{r_i - 1} {(n_i - j)(x_{i(j + 1)} - x_{i(j)} )} } \right\}$ The paper also derives the distribution of the statisticV=F 1 sin σ?F 2 cos σ and tables of critical values of theV-statistic are provided for the 5% level of significance and selected degrees of freedom.  相似文献   

19.
20.
In this paper we introduce the distribution of , with c >  0, where X i , i =  1, 2, are independent generalized beta-prime-distributed random variables, and establish a closed form expression of its density. This distribution has as its limiting case the generalized beta type I distribution recently introduced by Nadarajah and Kotz (2004). Due to the presence of several parameters the density can take a wide variety of shapes.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号