首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we present a Bayesian methodology for modelling accelerated lifetime tests under a stress response relationship with a threshold stress. Both Laplace and MCMC methods are considered. The methodology is described in detail for the case when an exponential distribution is assumed to express the behaviour of lifetimes, and a power law model with a threshold stress is assumed as the stress response relationship. We assume vague but proper priors for the parameters of interest. The methodology is illustrated by a accelerated failure test on an electrical insulation film.  相似文献   

2.

In this paper we consider a Bayesian analysis for an autoregressive model with random normal coefficients (RCA). For the proposed procedure we use conjugate priors for some parameters and improper vague priors for others. The inference for the parameters is made via Gibbs sampler and the convergence is assessed with multiple chains and Gelman and Rubin criterium. Forecasts are based on the predictive density of future observations. Some remarks are also made regarding order determination and stationarity. Applications to simulated and real series are given.  相似文献   

3.
Bayesian analysis of a bivariate survival model based on exponential distributions is discussed using both vague and conjugate prior distributions. Parameter and reliability estimators are given for the maximum likelihood technique and the Bayesian approach using both types of priors. A Monte Carlo study indicates the vague prior Bayes estimator of reliability performs better than its maximum likelihood counterpart.  相似文献   

4.
This paper presents a Bayesian solution to the problem of time series forecasting, for the case in which the generating process is an autoregressive of order one, with a normal random coefficient. The proposed procedure is based on the predictive density of the future observation. Conjugate priors are used for some parameters, while improper vague priors are used for others.  相似文献   

5.
We propose a Bayesian hierarchical model for multiple comparisons in mixed models where the repeated measures on subjects are described with the subject random effects. The model facilitates inferences in parameterizing the successive differences of the population means, and for them, we choose independent prior distributions that are mixtures of a normal distribution and a discrete distribution with its entire mass at zero. For the other parameters, we choose conjugate or vague priors. The performance of the proposed hierarchical model is investigated in the simulated and two real data sets, and the results illustrate that the proposed hierarchical model can effectively conduct a global test and pairwise comparisons using the posterior probability that any two means are equal. A simulation study is performed to analyze the type I error rate, the familywise error rate, and the test power. The Gibbs sampler procedure is used to estimate the parameters and to calculate the posterior probabilities.  相似文献   

6.
We develop strategies for Bayesian modelling as well as model comparison, averaging and selection for compartmental models with particular emphasis on those that occur in the analysis of positron emission tomography (PET) data. Both modelling and computational issues are considered. Biophysically inspired informative priors are developed for the problem at hand, and by comparison with default vague priors it is shown that the proposed modelling is not overly sensitive to prior specification. It is also shown that an additive normal error structure does not describe measured PET data well, despite being very widely used, and that within a simple Bayesian framework simultaneous parameter estimation and model comparison can be performed with a more general noise model. The proposed approach is compared with standard techniques using both simulated and real data. In addition to good, robust estimation performance, the proposed technique provides, automatically, a characterisation of the uncertainty in the resulting estimates which can be considerable in applications such as PET.  相似文献   

7.
The choice of prior distributions for the variances can be important and quite difficult in Bayesian hierarchical and variance component models. For situations where little prior information is available, a ‘nonin-formative’ type prior is usually chosen. ‘Noninformative’ priors have been discussed by many authors and used in many contexts. However, care must be taken using these prior distributions as many are improper and thus, can lead to improper posterior distributions. Additionally, in small samples, these priors can be ‘informative’. In this paper, we investigate a proper ‘vague’ prior, the uniform shrinkage prior (Strawder-man 1971; Christiansen & Morris 1997). We discuss its properties and show how posterior distributions for common hierarchical models using this prior lead to proper posterior distributions. We also illustrate the attractive frequentist properties of this prior for a normal hierarchical model including testing and estimation. To conclude, we generalize this prior to the multivariate situation of a covariance matrix.  相似文献   

8.
The paper considers a lognormal model for the survival times and obtains a Bayes solution by means of Gibbs sampler algorithm when the priors for the parameters are vague. The formulation given in the paper is mainly focused for censored data problems though it is equally well applicable for complete data scenarios as well. For the purpose of numerical illustration, we considered two real data sets on head and neck cancer patients when they have been treated using either radiotherapy or chemotherapy followed by radiotherapy. The paper not only compares the survival functions for the two therapies assuming a lognormal model but also provides a model compatibility study based on predictive simulation results so that the choice of lognormal model can be justified for the two data sets. The ease of our analysis as compared to an earlier approach is certainly an advantage.  相似文献   

9.
Due to computational challenges and non-availability of conjugate prior distributions, Bayesian variable selection in quantile regression models is often a difficult task. In this paper, we address these two issues for quantile regression models. In particular, we develop an informative stochastic search variable selection (ISSVS) for quantile regression models that introduces an informative prior distribution. We adopt prior structures which incorporate historical data into the current data by quantifying them with a suitable prior distribution on the model parameters. This allows ISSVS to search more efficiently in the model space and choose the more likely models. In addition, a Gibbs sampler is derived to facilitate the computation of the posterior probabilities. A major advantage of ISSVS is that it avoids instability in the posterior estimates for the Gibbs sampler as well as convergence problems that may arise from choosing vague priors. Finally, the proposed methods are illustrated with both simulation and real data.  相似文献   

10.
Bayesian inference of a generalized Weibull stress‐strength model (SSM) with more than one strength component is considered. For this problem, properly assigning priors for the reliabilities is challenging due to the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. Instead, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior performs well in terms of frequentist coverage and estimation even when the sample sizes are minimal. The prior is applied to two real datasets. The Canadian Journal of Statistics 41: 83–97; 2013 © 2012 Statistical Society of Canada  相似文献   

11.
Random-effects meta-analysis has become a well-established tool applied in many areas, for example, when combining the results of several clinical studies on a treatment effect. Typically, the inference aims at the common mean and the amount of heterogeneity. In some applications, the laboratory effects are of interest, for example, when assessing uncertainties quoted by laboratories participating in an interlaboratory comparison in metrology. We consider the Bayesian estimation of the realized random effects in random-effects meta-analysis. Several vague and noninformative priors are examined as well as a proposed novel one. Conditions are established that ensure propriety of the posteriors for the realized random effects. We present extensive simulation results that assess the inference in dependence on the choice of prior as well as mis-specifications in the statistical model. Overall good performance is observed for all priors with the novel prior showing the most promising results. Finally, the uncertainties reported by eleven national metrology institutes and universities for their measurements on the Newtonian constant of gravitation are assessed.  相似文献   

12.
Abstract

We develop a Bayesian statistical model for estimating bowhead whale population size from photo-identification data when most of the population is uncatchable. The proposed conditional likelihood function is a product of Darroch's model, formulated as a function of the number of good photos, and a binomial distribution of captured whales given the total number of good photos at each occasion. The full Bayesian model is implemented via adaptive rejection sampling for log concave densities. We apply the model to data from 1985 and 1986 bowhead whale photographic studies and the results compare favorably with the ones obtained in the literature. Also, a comparison with the maximum likelihood procedure with bootstrap simulation is considered using different vague priors for the capture probabilities.  相似文献   

13.
In this paper, we derive prediction distribution of future response(s) from the normal distribution assuming a generalized inverse Gaussian (GIG) prior density for the variance. The GIG includes as special cases the inverse Gaussian, the inverted chi-squared and gamma distributions. The results lead to Bessel-type prediction distributions which is in contrast with the Student-t distributions usually obtained using the inverted chi-squared prior density for the variance. Further, the general structure of GIG provides us with new flexible prediction distributions which include as special cases most of the earlier results obtained under normal-inverted chi-squared or vague priors.  相似文献   

14.
Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a dataset of lead pollution in Galicia, Spain.  相似文献   

15.
The generalized lognormal distribution plays an important role in analysing data from different life testing experiments. In this paper, we consider Bayesian analysis of this distribution using various objective priors for the model parameters. Specifically, we derive expressions for the Jeffreys-type priors, the reference priors with different group orderings of the parameters, and the first-order matching priors. We also study the properties of the posterior distributions of the parameters under these improper priors. It is shown that only two of them result in proper posterior distributions. Numerical simulation studies are conducted to compare the performances of the Bayesian estimators under the considered priors and the maximum likelihood estimates. Finally, a real-data application is also provided for illustrative purposes.  相似文献   

16.
This article is an empirical application of the search model with an unknown distribution, as introduced by Rothschild in 1974. For searchers who hold Dirichlet priors, we develop a novel characterization of optimal search behavior. Our solution delivers easily computable formulas for the ex-ante purchase probabilities as outcomes of search, as required by discrete-choice-based estimation. Using our method, we investigate the consequences of consumer learning on the properties of search-generated demand. Holding search costs constant, the search model from a known distribution predicts larger price elasticities, mainly for the lower-priced products. We estimate a search model with Dirichlet priors, on a dataset of prices and market shares of S&P 500 mutual funds. We find that the assumption of no uncertainty in consumer priors leads to substantial biases in search cost estimates.  相似文献   

17.
Bayes estimators of reliability for the lognormal failure distribution with two parameters (M,∑) are obtained both for informative priors of normal-gamma type and for the vague prior of Jeffreys. The estimators are in terms of the t-distribution function. The Bayes estimators are compared with the maximum likelihood and minimum variance unbiased estimators of reliabil-ity using Monte Carlo simulations.  相似文献   

18.
The versatile new criterion called the intrinsic Bayes factor (IBF), introduced by Berger and Pericchi [J. Amer. Statist. Assoc. 91 (1996) 109–122], has made it possible to perform model selection and hypotheses testing using standard (improper) noninformative priors in a variety of situations. In this paper, we use their methodology to test several hypotheses regarding the shape parameter of the power law process, which has been widely used to model failure times of repairable systems. Assuming that we have data from the process according to the time-truncation sampling scheme, we derive the arithmetic IBFs using four default priors, including the reference and Jeffreys priors. We establish the frequentist probability matching properties of these priors. We also identify two priors that are justifiable under both time-truncation and failure-truncation schemes, so that the IBFs for both schemes can be unified. Deducing the intrinsic priors of a certain canonical form, as the time of truncation tends to infinity, we show that the arithmetic IBFs correspond asymptotically to actual Bayes factors. We also discuss the expected IBFs, which are useful with small samples. We then use these results to analyze an actual data set on the interruption times of a transmission line, summarizing our results under the default priors.  相似文献   

19.
This paper surveys various shrinkage, smoothing and selection priors from a unifying perspective and shows how to combine them for Bayesian regularisation in the general class of structured additive regression models. As a common feature, all regularisation priors are conditionally Gaussian, given further parameters regularising model complexity. Hyperpriors for these parameters encourage shrinkage, smoothness or selection. It is shown that these regularisation (log-) priors can be interpreted as Bayesian analogues of several well-known frequentist penalty terms. Inference can be carried out with unified and computationally efficient MCMC schemes, estimating regularised regression coefficients and basis function coefficients simultaneously with complexity parameters and measuring uncertainty via corresponding marginal posteriors. For variable and function selection we discuss several variants of spike and slab priors which can also be cast into the framework of conditionally Gaussian priors. The performance of the Bayesian regularisation approaches is demonstrated in a hazard regression model and a high-dimensional geoadditive regression model.  相似文献   

20.
In this paper, we present large sample properties of a partially linear model from the Bayesian perspective, in which responses are explained by the semiparametric regression model with the additive form of the linear component and the nonparametric component. For this purpose, we investigate asymptotic behaviors of posterior distributions in terms of consistency. Specifically, we deal with a specific Bayesian partially linear regression model with additive noises in which the nonparametric component is modeled using Gaussian process priors. Under the Bayesian partially linear model using Gaussian process priors, we focus on consistency of posterior distribution and consistency of the Bayes factor, and extend these results to generalized additive regression models and study their asymptotic properties. In addition we illustrate the asymptotic properties based on empirical analysis through simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号