首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0,1] and indexing a set of tempered distributions, say π k (θ) π(θ) k . In this case, small values of k encourage better mixing, but samples from π are only obtained when the joint chain for (θ,k) reaches k=1. However, the entire chain can be used to estimate expectations under π of functions of interest, provided that importance sampling (IS) weights are calculated. Unfortunately this method, which we call importance tempering (IT), can disappoint. This is partly because the most immediately obvious implementation is naïve and can lead to high variance estimators. We derive a new optimal method for combining multiple IS estimators and prove that the resulting estimator has a highly desirable property related to the notion of effective sample size. We briefly report on the success of the optimal combination in two modelling scenarios requiring reversible-jump MCMC, where the naïve approach fails.  相似文献   

2.
Methods to perform regression on compositional covariates have recently been proposed using isometric log-ratios (ilr) representation of compositional parts. This approach consists of first applying standard regression on ilr coordinates and second, transforming the estimated ilr coefficients into their contrast log-ratio counterparts. This gives easy-to-interpret parameters indicating the relative effect of each compositional part. In this work we present an extension of this framework, where compositional covariate effects are allowed to be smooth in the ilr domain. This is achieved by fitting a smooth function over the multidimensional ilr space, using Bayesian P-splines. Smoothness is achieved by assuming random walk priors on spline coefficients in a hierarchical Bayesian framework. The proposed methodology is applied to spatial data from an ecological survey on a gypsum outcrop located in the Emilia Romagna Region, Italy.  相似文献   

3.
A new data science tool named wavelet-based gradient boosting is proposed and tested. The approach is special case of componentwise linear least squares gradient boosting, and involves wavelet functions of the original predictors. Wavelet-based gradient boosting takes advantages of the approximate \(\ell _1\) penalization induced by gradient boosting to give appropriate penalized additive fits. The method is readily implemented in R and produces parsimonious and interpretable regression fits and classifiers.  相似文献   

4.
Survival studies often generate not only a survival time for each patient but also a sequence of health measurements at annual or semi-annual check-ups while the patient remains alive. Such a sequence of random length accompanied by a survival time is called a survival process. Robust health is ordinarily associated with longer survival, so the two parts of a survival process cannot be assumed independent. This paper is concerned with a general technique—reverse alignment—for constructing statistical models for survival processes, here termed revival models. A revival model is a regression model in the sense that it incorporates covariate and treatment effects into both the distribution of survival times and the joint distribution of health outcomes. The revival model also determines a conditional survival distribution given the observed history, which describes how the subsequent survival distribution is determined by the observed progression of health outcomes.  相似文献   

5.
Survival studies often generate not only a survival time for each patient but also a sequence of health measurements at annual or semi-annual check-ups while the patient remains alive. Such a sequence of random length accompanied by a survival time is called a survival process. Robust health is ordinarily associated with longer survival, so the two parts of a survival process cannot be assumed independent. This paper is concerned with a general technique—reverse alignment—for constructing statistical models for survival processes, here termed revival models. A revival model is a regression model in the sense that it incorporates covariate and treatment effects into both the distribution of survival times and the joint distribution of health outcomes. The revival model also determines a conditional survival distribution given the observed history, which describes how the subsequent survival distribution is determined by the observed progression of health outcomes.  相似文献   

6.
This paper discusses the contribution of Cerioli et al. (Stat Methods Appl, 2018), where robust monitoring based on high breakdown point estimators is proposed for multivariate data. The results follow years of development in robust diagnostic techniques. We discuss the issues of extending data monitoring to other models with complex structure, e.g. factor analysis, mixed linear models for which S and MM-estimators exist or deviating data cells. We emphasise the importance of robust testing that is often overlooked despite robust tests being readily available once S and MM-estimators have been defined. We mention open questions like out-of-sample inference or big data issues that would benefit from monitoring.  相似文献   

7.
Let X be a N(μ, σ 2) distributed characteristic with unknown σ. We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.  相似文献   

8.
We propose a general framework for regression models with functional response containing a potentially large number of flexible effects of functional and scalar covariates. Special emphasis is put on historical functional effects, where functional response and functional covariate are observed over the same interval and the response is only influenced by covariate values up to the current grid point. Historical functional effects are mostly used when functional response and covariate are observed on a common time interval, as they account for chronology. Our formulation allows for flexible integration limits including, e.g., lead or lag times. The functional responses can be observed on irregular curve-specific grids. Additionally, we introduce different parameterizations for historical effects and discuss identifiability issues.The models are estimated by a component-wise gradient boosting algorithm which is suitable for models with a potentially high number of covariate effects, even more than observations, and inherently does model selection. By minimizing corresponding loss functions, different features of the conditional response distribution can be modeled, including generalized and quantile regression models as special cases. The methods are implemented in the open-source R package FDboost. The methodological developments are motivated by biotechnological data on Escherichia coli fermentations, but cover a much broader model class.  相似文献   

9.
Let \({\{X_n, n\geq 1\}}\) be a sequence of independent and identically distributed non-degenerated random variables with common cumulative distribution function F. Suppose X 1 is concentrated on 0, 1, . . . , N ≤ ∞ and P(X 1 = 1) > 0. Let \({X_{U_w(n)}}\) be the n-th upper weak record value. In this paper we show that for any fixed m ≥ 2, X 1 has Geometric distribution if and only if \({X_{U_{w}(m)}\mathop=\limits^d X_1+\cdots+X_m ,}\) where \({\underline{\underline{d}}}\) denotes equality in distribution. Our result is a generalization of the case m = 2 obtained by Ahsanullah (J Stat Theory Appl 8(1):5–16, 2009).  相似文献   

10.
We propose a novel Bayesian analysis of the p-variate skew-t model, providing a new parameterization, a set of non-informative priors and a sampler specifically designed to explore the posterior density of the model parameters. Extensions, such as the multivariate regression model with skewed errors and the stochastic frontiers model, are easily accommodated. A novelty introduced in the paper is given by the extension of the bivariate skew-normal model given in Liseo and Parisi (2013) to a more realistic p-variate skew-t model. We also introduce the R package mvst, which produces a posterior sample for the parameters of a multivariate skew-t model.  相似文献   

11.
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.  相似文献   

12.
A typical problem in optimal design theory is finding an experimental design that is optimal with respect to some criteria in a class of designs. The most popular criteria include the A- and D-criteria. Regular graph designs occur in many optimality results, and if the number of blocks is large enough, an A-optimal (or D-optimal) design is among them (if any exist). To explore the landscape of designs with a large number of blocks, we introduce extensions of regular graph designs. These are constructed by adding the blocks of a balanced incomplete block design repeatedly to the original design. We present the results of an exact computer search for the best regular graph designs and the best extended regular graph designs with up to 20 treatments v, block size \(k \le 10\) and replication r \(\le 10\) and \(r(k-1)-(v-1)\lfloor r(k-1)/(v-1)\rfloor \le 9\).  相似文献   

13.
Consider an experiment for comparing a set of treatments: in each trial, one treatment is chosen and its effect determines the mean response of the trial. We examine the optimal approximate designs for the estimation of a system of treatment contrasts under this model. These designs can be used to provide optimal treatment proportions in more general models with nuisance effects. For any system of pairwise treatment comparisons, we propose to represent such a system by a graph. Then, we represent the designs by the inverses of the vertex weights in the corresponding graph and we show that the values of the eigenvalue-based optimality criteria can be expressed using the Laplacians of the vertex-weighted graphs. We provide a graph theoretic interpretation of D-, A- and E-optimality for estimating sets of pairwise comparisons. We apply the obtained graph representation to provide optimality results for these criteria as well as for ’symmetric’ systems of treatment contrasts.  相似文献   

14.
In this paper a test for model selection is proposed which extends the usual goodness-of-fit test in several ways. It is assumed that the underlying distribution H depends on a covariate value in a fixed design setting. Secondly, instead of one parametric class we consider two competing classes one of which may contain the underlying distribution. The test allows to select one of two equally treated model classes which fits the underlying distribution better. To define the distance of distributions various measures are available. Here the Cramér-von Mises has been chosen. The null hypothesis that both parametric classes have the same distance to the underlying distribution H can be checked by means of a test statistic, the asymptotic properties of which are shown under a set of suitable conditions. The performance of the test is demonstrated by Monte Carlo simulations. Finally, the procedure is applied to a data set from an endurance test on electric motors.  相似文献   

15.
Weak identification is a well-known issue in the context of linear structural models. However, for probit models with endogenous explanatory variables, this problem has been little explored. In this paper, we study by simulating the behavior of the usual z-test and the LR test in the presence of weak identification. We find that the usual asymptotic z-test exhibits large level distortions (over-rejections under the null hypothesis). The magnitude of the level distortions depends heavily on the parameter value tested. In contrast, asymptotic LR tests do not over-reject and appear to be robust to weak identification.  相似文献   

16.
We find optimal designs for linear models using a novel algorithm that iteratively combines a semidefinite programming (SDP) approach with adaptive grid techniques. The proposed algorithm is also adapted to find locally optimal designs for nonlinear models. The search space is first discretized, and SDP is applied to find the optimal design based on the initial grid. The points in the next grid set are points that maximize the dispersion function of the SDP-generated optimal design using nonlinear programming. The procedure is repeated until a user-specified stopping rule is reached. The proposed algorithm is broadly applicable, and we demonstrate its flexibility using (i) models with one or more variables and (ii) differentiable design criteria, such as A-, D-optimality, and non-differentiable criterion like E-optimality, including the mathematically more challenging case when the minimum eigenvalue of the information matrix of the optimal design has geometric multiplicity larger than 1. Our algorithm is computationally efficient because it is based on mathematical programming tools and so optimality is assured at each stage; it also exploits the convexity of the problems whenever possible. Using several linear and nonlinear models with one or more factors, we show the proposed algorithm can efficiently find optimal designs.  相似文献   

17.
Although the concept of sufficient dimension reduction that was originally proposed has been there for a long time, studies in the literature have largely focused on properties of estimators of dimension-reduction subspaces in the classical “small p, and large n” setting. Rather than the subspace, this paper considers directly the set of reduced predictors, which we believe are more relevant for subsequent analyses. A principled method is proposed for estimating a sparse reduction, which is based on a new, revised representation of an existing well-known method called the sliced inverse regression. A fast and efficient algorithm is developed for computing the estimator. The asymptotic behavior of the new method is studied when the number of predictors, p, exceeds the sample size, n, providing a guide for choosing the number of sufficient dimension-reduction predictors. Numerical results, including a simulation study and a cancer-drug-sensitivity data analysis, are presented to examine the performance.  相似文献   

18.
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: (1) marginal means for mediation path a, the relation of the independent variable to the mediator; (2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and (3) the between-trial level variance–covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two real-data examples and make recommendations for the use of the method in different settings.  相似文献   

19.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

20.
Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However, for datasets where the number of variables p is large the algorithm can become inefficient and computationally expensive. Another method which is popular for high-dimensional data is random forests, a machine learning algorithm which grows trees using a greedy search for the best split points. However, its default implementation does not produce probabilistic estimates or predictions. We propose an alternative fitting algorithm for BART called BART-BMA, which uses Bayesian model averaging and a greedy search algorithm to obtain a posterior distribution more efficiently than BART for datasets with large p. BART-BMA incorporates elements of both BART and random forests to offer a model-based algorithm which can deal with high-dimensional data. We have found that BART-BMA can be run in a reasonable time on a standard laptop for the “small n large p” scenario which is common in many areas of bioinformatics. We showcase this method using simulated data and data from two real proteomic experiments, one to distinguish between patients with cardiovascular disease and controls and another to classify aggressive from non-aggressive prostate cancer. We compare our results to their main competitors. Open source code written in R and Rcpp to run BART-BMA can be found at: https://github.com/BelindaHernandez/BART-BMA.git.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号