首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimation of a normal mean relative to balanced loss functions   总被引:3,自引:0,他引:3  
LetX 1,…,X nbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function, % MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean % MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form % MathType!End!2!1! under % MathType!End!2!1!. We also consider the weighted balanced loss function, % MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =e θ .  相似文献   

2.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

3.
4.
Summary Letg(x) andf(x) be continuous density function on (a, b) and let {ϕj} be a complete orthonormal sequence of functions onL 2(g), which is the set of squared integrable functions weighted byg on (a, b). Suppose that over (a, b). Given a grouped sample of sizen fromf(x), the paper investigates the asymptotic properties of the restricted maximum likelihood estimator of density, obtained by setting all but the firstm of the ϑj’s equal to0. Practical suggestions are given for performing estimation via the use of Fourier and Legendre polynomial series. Research partially supported by: CNR grant, n. 93. 00837. CT10.  相似文献   

5.
Letx i(1)≤x i(2)≤…≤x i(ri) be the right-censored samples of sizesn i from theith exponential distributions $\sigma _i^{ - 1} exp\{ - (x - \mu _i )\sigma _i^{ - 1} \} ,i = 1,2$ where μi and σi are the unknown location and scale parameters respectively. This paper deals with the posteriori distribution of the difference between the two location parameters, namely μ21, which may be represented in the form $\mu _2 - \mu _1 \mathop = \limits^\mathcal{D} x_{2(1)} - x_{1(1)} + F_1 \sin \theta - F_2 \cos \theta $ where $\mathop = \limits^\mathcal{D} $ stands for equal in distribution,F i stands for the central F-variable with [2,2(r i?1)] degrees of freedom and $\tan \theta = \frac{{n_2 s_{x1} }}{{n_1 s_{x2} }}, s_{x1} = (r_1 - 1)^{ - 1} \left\{ {\sum\limits_{j = 1}^{r_i - 1} {(n_i - j)(x_{i(j + 1)} - x_{i(j)} )} } \right\}$ The paper also derives the distribution of the statisticV=F 1 sin σ?F 2 cos σ and tables of critical values of theV-statistic are provided for the 5% level of significance and selected degrees of freedom.  相似文献   

6.
Summary Let , whereX i are i.i.d. random variables with a finite variance σ2 and is the usual estimate of the mean ofX i. We consider the problem of finding optimal α with respect to the minimization of the expected value of |S 2(σ)−σ2|k for variousk and with respect to Pitman's nearness criterion. For the Gaussian case analytical results are obtained and for some non-Gaussian cases we present Monte Carlo results regarding Pitman's criteron. This research was supported by Science Fund of Serbia, grant number 04M03, through Mathematical Institute, Belgrade.  相似文献   

7.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

8.
The mixture of Rayleigh random variables X 1and X 2 are identified in terms of relations between the conditional expectation of ( X2:22 -X1:22)r{\left( {X_{2:2}^2 -X_{1:2}^2}\right)^{r}} given X 1:2 (or X2:22k{X_{2:2}^{2k}} given X1:2,"kr){X_{1:2},\forall k\leq r)} and hazard rate function of the distribution, where X 1:2 and X 2:2 denote the corresponding order statistics, r is a positive integer. In addition, we also mention some related theorems to characterize the mixtures of Rayleigh distributions. Finally, we also give an application to Multi-Hit models of carcinogenesis (Parallel Systems) and a simulated example is used to illustrate our results.  相似文献   

9.
10.
Let [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} denote the best linear unbiased estimators of a given vector of parametric functions \varveck = \varvecKb{\varvec{\kappa} = \varvec{K\beta}} in the general linear models M = {\varvecy, \varvecX\varvecb, s2\varvecV}{{\mathcal M} = \{\varvec{y},\, \varvec{X\varvec{\beta}},\, \sigma^2\varvec{V}\}} and Mr = {\varvecy, \varvecX\varvecb | \varvecR \varvecb = \varvecr, s2\varvecV}{{\mathcal M}_r = \{\varvec{y},\, \varvec{X}\varvec{\beta} \mid \varvec{R} \varvec{\beta} = \varvec{r},\, \sigma^2\varvec{V}\}}, respectively. A bound for the Euclidean distance between [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} is expressed by the spectral distance between the dispersion matrices of the two estimators, and the difference between sums of squared errors evaluated in the model M{{\mathcal M}} and sub-restricted model Mr*{{\mathcal M}_r^*} containing an essential part of the restrictions \varvecR\varvecb = \varvecr{\varvec{R}\varvec{\beta} = \varvec{r}} with respect to estimating \varveck{\varvec{\kappa}}.  相似文献   

11.
When constructing uniform random numbers in [0, 1] from the output of a physical device, usually n independent and unbiased bits B j are extracted and combined into the machine number . In order to reduce the number of data used to build one real number, we observe that for independent and exponentially distributed random variables X n (which arise for example as waiting times between two consecutive impulses of a Geiger counter) the variable U n : = X 2n – 1/(X 2n – 1 + X 2n ) is uniform in [0, 1]. In the practical application X n can only be measured up to a given precision (in terms of the expectation of the X n ); it is shown that the distribution function obtained by calculating U n from these measurements differs from the uniform by less than /2.We compare this deviation with the error resulting from the use of biased bits B j with P {B j = 1{ = (where ] – [) in the construction of Y above. The influence of a bias is given by the estimate that in the p-total variation norm Q TV p = ( |Q()| p )1/p (p 1) we have P Y P 0 Y TV p (c n · )1/p with c n p for n . For the distribution function F Y F 0 Y 2(1 – 2n )|| holds.  相似文献   

12.
The distributions of the product and ratio of independent random variables arise in many applied problems. These have been extensively studied by many researchers. In this paper, the distributions of the product | XY | and ratio have been derived, when X and Y are Maxwell and Rayleigh random variables and are distributed independently of each other. The associated cdfs, pdfs, kth moments, entropies, etc., have been given. To describe the possible shapes of the associated pdfs and entropies, the respective plots are provided. The percentage points associated with the cdfs of the product and ratio have been tabulated.  相似文献   

13.
This paper is devoted to the problem of estimating the square of population mean (μ2) in normal distribution when a prior estimate or guessed value σ0 2 of the population variance σ2 is available. We have suggested a family of shrinkage estimators , say, for μ2 with its mean squared error formula. A condition is obtained in which the suggested estimator is more efficient than Srivastava et al’s (1980) estimator Tmin. Numerical illustrations have been carried out to demonstrate the merits of the constructed estimator over Tmin. It is observed that some of these estimators offer improvements over Tmin particularly when the population is heterogeneous and σ2 is in the vicinity of σ0 2.  相似文献   

14.
The general Gauss–Markov model, Y = e, E(e) = 0, Cov(e) = σ 2 V, has been intensively studied and widely used. Most studies consider covariance matrices V that are nonsingular but we focus on the most difficult case wherein C(X), the column space of X, is not contained in C(V). This forces V to be singular. Under this condition there exist nontrivial linear functions of Q that are known with probability 1 (perfectly) where ${C(Q)=C(V)^\perp}$ . To treat ${C(X) \not \subset C(V)}$ , much of the existing literature obtains estimates and tests by replacing V with a pseudo-covariance matrix T = V + XUX′ for some nonnegative definite U such that ${C(X) \subset C(T)}$ , see Christensen (Plane answers to complex questions: the theory of linear models, 2002, Chap. 10). We find it more intuitive to first eliminate what is known about and then to adjust X while keeping V unchanged. We show that we can decompose β into the sum of two orthogonal parts, β = β 0 + β 1, where β 0 is known. We also show that the unknown component of X β is ${X\beta_1 \equiv \tilde{X} \gamma}$ , where ${C(\tilde{X})=C(X)\cap C(V)}$ . We replace the original model with ${Y-X\beta_0=\tilde{X}\gamma+e}$ , E(e) = 0, ${Cov(e)=\sigma^2V}$ and perform estimation and tests under this new model for which the simplifying assumption ${C(\tilde{X}) \subset C(V)}$ holds. This allows us to focus on the part of that parameters that are not known perfectly. We show that this method provides the usual estimates and tests.  相似文献   

15.
In this paper we consider the inferential aspect of the nonparametric estimation of a conditional function , where X t,m represents the vector containing the m conditioning lagged values of the series. Here is an arbitrary measurable function. The local polynomial estimator of order p is used for the estimation of the function g, and of its partial derivatives up to a total order p. We consider α-mixing processes, and we propose the use of a particular resampling method, the local polynomial bootstrap, for the approximation of the sampling distribution of the estimator. After analyzing the consistency of the proposed method, we present a simulation study which gives evidence of its finite sample behaviour.  相似文献   

16.
Summary In this paper likelihood is characterized as an index which measures how much a model fits a sample. Some properties required to an index of fit are introduced and discussed, while stressing how they describe aspects inner to idea of fit. Finally we prove that, if an index of fit is maximal when the model reaches the distribution of the sample, then such an index is an increasing continuous transform of , where thep i's are the theoretical relative frequencies provided by the model and theq i's are the actual relative frequencies of the sample.  相似文献   

17.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

18.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

19.
Given a random sample of size \(n\) with mean \(\overline{X} \) and standard deviation \(s\) from a symmetric distribution \(F(x; \mu , \sigma ) = F_{0} (( x- \mu ) / \sigma ) \) with \(F_0\) known, and \(X \sim F(x;\; \mu , \sigma )\) independent of the sample, we show how to construct an expansion \( a_n^{\prime } = \sum _{i=0}^\infty \ c_i \ n^{-i} \) such that \(\overline{X} - s a_n^{\prime } < X < \overline{X} + s a_n^{\prime } \) with a given probability \(\beta \) . The practical value of this result is illustrated by simulation and using a real data set.  相似文献   

20.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号