首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A semiparametric estimator based on an unknown density isuniformly adaptive if the expected loss of the estimator converges to the asymptotic expected loss of the maximum liklihood estimator based on teh true density (MLE), and if convergence does not depend on either the parameter values or the form of the unknown density. Without uniform adaptivity, the asymptotic expected loss of the MLE need not approximate the expected loss of a semiparametric estimator for any finite sample I show that a two step semiparametric estimator is uniformly adaptive for the parameters of nonlinear regression models with autoregressive moving average errors.  相似文献   

2.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

3.
The aim of this paper is to study the estimation of the reliability R=P(Y<X) when X and Y are independent random variables that follow Kumaraswamy's distribution with different parameters. If we assume that the first shape parameter is common and known, the maximum-likelihood estimator (MLE), the exact confidence interval and the uniformly minimum variance unbiased estimator of R are obtained. Moreover, when the first parameter is common but unknown, MLEs, Bayes estimators, asymptotic distributions and confidence intervals for R are derived. Furthermore, Bayes and empirical Bayes estimators for R are obtained when the first parameter is common and known. Finally, when all four parameters are different and unknown, the MLE of R is obtained. Monte Carlo simulations are performed to compare the different proposed methods and conclusions on the findings are given.  相似文献   

4.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

5.
In the parametric regression model, the covariate missing problem under missing at random is considered. It is often desirable to use flexible parametric or semiparametric models for the covariate distribution, which can reduce a potential misspecification problem. Recently, a completely nonparametric approach was developed by [H.Y. Chen, Nonparametric and semiparametric models for missing covariates in parameter regression, J. Amer. Statist. Assoc. 99 (2004), pp. 1176–1189; Z. Zhang and H.E. Rockette, On maximum likelihood estimation in parametric regression with missing covariates, J. Statist. Plann. Inference 47 (2005), pp. 206–223]. Although it does not require a model for the covariate distribution or the missing data mechanism, the proposed method assumes that the covariate distribution is supported only by observed values. Consequently, their estimator is a restricted maximum likelihood estimator (MLE) rather than the global MLE. In this article, we show the restricted semiparametric MLE could be very misleading in some cases. We discuss why this problem occurs and suggest an algorithm to obtain the global MLE. Then, we assess the performance of the proposed method via some simulation experiments.  相似文献   

6.
Abstract.  A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.  相似文献   

7.
An identity for exponential distributions with an unknown common location parameter and unknown and possibly unequal scale parameters is established.Through use of the identity the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased estimator (UMVUE) of a quantile of an exponential population are compared under the squared error loss.A class of estimators dominating both MLE and UMVUE is obtained by using the identity.  相似文献   

8.
We consider the right truncated exponential distribution where the truncation point is unknown and show that the ML equation has a unique solution over an extended parameter space. In the case of the estimation of the truncation point T we show that the asymptotic distribution of the MLE is not centered at T. A modified MLE is introduced which outperforms all other considered estimators including the minimum variance unbiased estimator. Asymptotic as well as small sample properties of different estimators are investigated and compared. The truncated exponential distribution has an increasing failure rate, ideally suited for use as a survival distribution for biological and industrial data.  相似文献   

9.
We consider the problem of estimating the proportion θ of true null hypotheses in a multiple testing context. The setup is classically modelled through a semiparametric mixture with two components: a uniform distribution on interval [0,1] with prior probability θ and a non‐parametric density f . We discuss asymptotic efficiency results and establish that two different cases occur whether f vanishes on a non‐empty interval or not. In the first case, we exhibit estimators converging at a parametric rate, compute the optimal asymptotic variance and conjecture that no estimator is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the second case, we prove that the quadratic risk of any estimator does not converge at a parametric rate. We illustrate those results on simulated data.  相似文献   

10.
Simultaneous robust estimates of location and scale parameters are derived from minimizing a minimum-distance criterion function. The criterion function measures the squared distance between the pth power (p > 0) of the empirical distribution function and the pth power of the imperfectly determined model distribution function over the real line. We show that the estimator is uniquely defined, is asymptotically bivariate normal and for p > 0.3 has positive breakdown. If the scale parameter is known, when p = 0.9 the asymptotic variance (1.0436) of the location estimator for the normal model is smaller than the asymptotic variance of the Hodges-Lehmann (HL)estimator (1.0472). Efficiencies with respect to HL and maximum-likelihood estimators (MLE) are 1.0034 and 0.9582, respectively. Similarly, if the location parameter is known, when p = 0.97 the asymptotic variance (0.6158) of the scale estimator is minimum. The efficiency with respect to the MLE is 0.8119. We show that the estimator can tolerate more corrupted observations at oo than at – for p < 1, and vice versa for p > 1.  相似文献   

11.
Abstract.  We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.  相似文献   

12.
Over forty years ago, Grenander derived the MLE of a monotone decreasing density f with known mode. Prakasa Rao obtained the asymptotic distribution of this estimator at a fixed point x where f' (x) < 0. Here, we obtain the asymptotic distribution of this estimator at a fixed point x when f is constant and nonzero in some open neighborhood of x. This limiting distribution is expressible as the convolution of a closed-form density and a rescaled standard normal density. Groeneboom (1983) derived the aforementioned closed-form density and we provide an alternative, more direct derivation.  相似文献   

13.
Abstract.  We consider large sample inference in a semiparametric logistic/proportional-hazards mixture model. This model has been proposed to model survival data where there exists a positive portion of subjects in the population who are not susceptible to the event under consideration. Previous studies of the logistic/proportional-hazards mixture model have focused on developing point estimation procedures for the unknown parameters. This paper studies large sample inferences based on the semiparametric maximum likelihood estimator. Specifically, we establish existence, consistency and asymptotic normality results for the semiparametric maximum likelihood estimator. We also derive consistent variance estimates for both the parametric and non-parametric components. The results provide a theoretical foundation for making large sample inference under the logistic/proportional-hazards mixture model.  相似文献   

14.
The problem of estimation of an unknown common scale parameter of several Pareto distributions with unknown and possibly unequal shape parameters in censored samples is considered. A new class of estimators which includes both the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased estimator (UMVUE) is proposed and examined under a squared error loss.  相似文献   

15.
Consider the problem of estimating the common location parameter of two exponential populations using record data when the scale parameters are unknown. We derive the maximum likelihood estimator (MLE), the modified maximum likelihood estimator (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE) of the common location parameter. Further, we derive a general result for inadmissibility of an equivariant estimator under the scaled-squared error loss function. Using this result, we conclude that the MLE and the UMVUE are inadmissible and better estimators are provided. A simulation study is conducted for comparing the performances of various competing estimators.  相似文献   

16.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

17.
In this paper, we consider the maximum likelihood and Bayes estimation of the scale parameter of the half-logistic distribution based on a multiply type II censored sample. However, the maximum likelihood estimator(MLE) and Bayes estimator do not exist in an explicit form for the scale parameter. We consider a simple method of deriving an explicit estimator by approximating the likelihood function and discuss the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney & Kadane, 1986) is used to obtain the Bayes estimator. In order to compare the MLE, approximate MLE and Bayes estimates of the scale parameter, Monte Carlo simulation is used.  相似文献   

18.
In this note, the asymptotic variance formulas are explicitly derived and compared between the parametric and semiparametric estimators of a regression parameter and survival probability under the additive hazards model. To obtain explicit formulas, it is assumed that the covariate term including a regression coefficient follows a gamma distribution and the baseline hazard function is constant. The results show that the semiparametric estimator of the regression coefficient parameter is fully efficient relative to the parametric counterpart when the survival time and a covariate are independent, as in the proportional hazards model. Relative to a more realistic case of the parametric additive hazards model with a Weibull baseline, the loss of efficiency of the semiparametric estimator of survival probability is moderate.  相似文献   

19.
The problem of estimation of an unknown common location parameter of several exponential populations with unknown and possibly unequal scale parameters is considered. A wide class of estimators, including both a modified maximum likelihood estimator (MLE), and the uniformly minimum variance unbiased estimator (Umvue) proposed by ghosh and razmpour(1984), is obtained under a class of convex loss functions.  相似文献   

20.
This article studies the estimation of the reliability R = P[Y < X] when X and Y come from two independent generalized logistic distributions of Type-II with different parameters, based on progressively Type-II censored samples. When the common scale parameter is unknown, the maximum likelihood estimator and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique have been proposed too. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are extracted. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real dataset is given for illustrative purposes. Finally, methods are extended for proportional hazard rate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号