首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase I clinical trials are conducted in order to find the maximum tolerated dose (MTD) of a given drug from a finite set of doses. For ethical reasons, these studies are usually sequential, treating patients or groups of patients with the optimal dose according to the current knowledge, with the hope that this will lead to using the true MTD from some time on. However, the first result proved here is that this goal is infeasible, and that such designs, and, more generally, designs that concentrate on one dose from some time on, cannot provide consistent estimators for the MTD unless very strong parametric assumptions hold. Allowing some non-MTD treatment, we construct a randomized design that assigns the MTD with probability that approaches one as the size of the experiment goes to infinity and estimates the MTD consistently. We compare the suggested design with several methods by simulations, studying their performances in terms of correct estimation of the MTD and the proportion of individuals treated with the MTD.  相似文献   

2.
Phase I studies of a cytotoxic agent often aim to identify the dose that provides an investigator specified target dose-limiting toxicity (DLT) probability. In practice, an initial cohort receives a dose with a putative low DLT probability, and subsequent dosing follows by consecutively deciding whether to retain the current dose, escalate to the adjacent higher dose, or de-escalate to the adjacent lower dose. This article proposes a Phase I design derived using a Bayesian decision-theoretic approach to this sequential decision-making process. The design consecutively chooses the action that minimizes posterior expected loss where the loss reflects the distance on the log-odds scale between the target and the DLT probability of the dose that would be given to the next cohort under the corresponding action. A logistic model is assumed for the log odds of a DLT at the current dose with a weakly informative t-distribution prior centered at the target. The key design parameters are the pre-specified odds ratios for the DLT probabilities at the adjacent higher and lower doses. Dosing rules may be pre-tabulated, as these only depend on the outcomes at the current dose, which greatly facilitates implementation. The recommended default version of the proposed design improves dose selection relative to many established designs across a variety of scenarios.  相似文献   

3.
Phase I clinical trials aim to identify a maximum tolerated dose (MTD), the highest possible dose that does not cause an unacceptable amount of toxicity in the patients. In trials of combination therapies, however, many different dose combinations may have a similar probability of causing a dose‐limiting toxicity, and hence, a number of MTDs may exist. Furthermore, escalation strategies in combination trials are more complex, with possible escalation/de‐escalation of either or both drugs. This paper investigates the properties of two existing proposed Bayesian adaptive models for combination therapy dose‐escalation when a number of different escalation strategies are applied. We assess operating characteristics through a series of simulation studies and show that strategies that only allow ‘non‐diagonal’ moves in the escalation process (that is, both drugs cannot increase simultaneously) are inefficient and identify fewer MTDs for Phase II comparisons. Such strategies tend to escalate a single agent first while keeping the other agent fixed, which can be a severe restriction when exploring dose surfaces using a limited sample size. Meanwhile, escalation designs based on Bayesian D‐optimality allow more varied experimentation around the dose space and, consequently, are better at identifying more MTDs. We argue that for Phase I combination trials it is sensible to take forward a number of identified MTDs for Phase II experimentation so that their efficacy can be directly compared. Researchers, therefore, need to carefully consider the escalation strategy and model that best allows the identification of these MTDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Ⅰ期临床试验的主要目的是探索药物毒性最大耐受剂量MTD,而MTD估计的准确与否将影响之后的Ⅱ期和Ⅲ期临床试验研究的结果.抗肿瘤药物Ⅰ期试验的特点是直接对病人进行试验,且样本量较小,这对构造估计精确度高并具有安全性保障要求的统计设计方法提出了挑战.回顾三种常用的Ⅰ期试验设计方法有:3+3设计、CRM设计和mTPI设计.3+3设计是应用较为广泛的传统方法,后两者是当前常用的贝叶斯自适应试验设计方法.通过大量模拟研究对三种方法从最优分配、安全性和估计MTD精确性三方面给以全面考察,并结合中国实际得出mTPI设计是比较适合推荐的Ⅰ期临床试验设计方法的结论.  相似文献   

5.
This article proposes an extension of the continual reassessment method to determine the maximum tolerated dose (MTD) in the presence of patients' heterogeneity in phase I clinical trials. To start with a simple case, we consider the covariate as a binary variable representing two groups of patients. A logistic regression model is used to establish the dose–response relationship and the design is based on the Bayesian framework. Simulation studies for six plausible dose–response scenarios show that the proposed design is likely to determine the MTD more accurately than the design that does not take covariate into consideration.  相似文献   

6.
In modern oncology drug development, adaptive designs have been proposed to identify the recommended phase 2 dose. The conventional dose finding designs focus on the identification of maximum tolerated dose (MTD). However, designs ignoring efficacy could put patients under risk by pushing to the MTD. Especially in immuno-oncology and cell therapy, the complex dose-toxicity and dose-efficacy relationships make such MTD driven designs more questionable. Additionally, it is not uncommon to have data available from other studies that target on similar mechanism of action and patient population. Due to the high variability from phase I trial, it is beneficial to borrow historical study information into the design when available. This will help to increase the model efficiency and accuracy and provide dose specific recommendation rules to avoid toxic dose level and increase the chance of patient allocation at potential efficacious dose levels. In this paper, we propose iBOIN-ET design that uses prior distribution extracted from historical studies to minimize the probability of decision error. The proposed design utilizes the concept of skeleton from both toxicity and efficacy data, coupled with prior effective sample size to control the amount of historical information to be incorporated. Extensive simulation studies across a variety of realistic settings are reported including a comparison of iBOIN-ET design to other model based and assisted approaches. The proposed novel design demonstrates the superior performances in percentage of selecting the correct optimal dose (OD), average number of patients allocated to the correct OD, and overdosing control during dose escalation process.  相似文献   

7.
The main goal of phase I cancer clinical trials is to determine the highest dose of a new therapy associated with an acceptable level of toxicity for the use in a subsequent phase II trial. The continual reassessment method (CRM) [O’Quigley, J., Pepe, M., Fisher, L., 1990. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46, 33–48] and escalation with overdose control (EWOC) [Babb, J., Rogatko, A., Zacks, S., 1998. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statist. Med. 17 (10), 1103–1120] are two model-based designs used for phase I cancer clinical trials. A few modifications of the (original) CRM and EWOC have been made by many authors. In this paper, we show how CRM and EWOC can be unified and present a hybrid design. We study the characteristics of the approach of the hybrid design. The comparisons of the three designs (CRM, EWOC, and the hybrid design) are presented by convergence rates and overdose proportions. The simulation results show that the hybrid design generally has faster convergence rates than EWOC and smaller overdose proportions than CRM, especially when the true maximum tolerated dose (MTD) is above the mid-level of the dose range considered. The performance of these three designs is also evaluated in terms of sensitivity to outliers.  相似文献   

8.
Compared with most of the existing phase I designs, the recently proposed calibration-free odds (CFO) design has been demonstrated to be robust, model-free, and easy to use in practice. However, the original CFO design cannot handle late-onset toxicities, which have been commonly encountered in phase I oncology dose-finding trials with targeted agents or immunotherapies. To account for late-onset outcomes, we extend the CFO design to its time-to-event (TITE) version, which inherits the calibration-free and model-free properties. One salient feature of CFO-type designs is to adopt game theory by competing three doses at a time, including the current dose and the two neighboring doses, while interval-based designs only use the data at the current dose and is thus less efficient. We conduct comprehensive numerical studies for the TITE-CFO design under both fixed and randomly generated scenarios. TITE-CFO shows robust and efficient performances compared with interval-based and model-based counterparts. As a conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alternatives for phase I trials when the toxicity outcome is late-onset.  相似文献   

9.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Drug-combination studies have become increasingly popular in oncology. One of the critical concerns in phase I drug-combination trials is the uncertainty in toxicity evaluation. Most of the existing phase I designs aim to identify the maximum tolerated dose (MTD) by reducing the two-dimensional searching space to one dimension via a prespecified model or splitting the two-dimensional space into multiple one-dimensional subspaces based on the partially known toxicity order. Nevertheless, both strategies often lead to complicated trials which may either be sensitive to model assumptions or induce longer trial durations due to subtrial split. We develop two versions of dynamic ordering design (DOD) for dose finding in drug-combination trials, where the dose-finding problem is cast in the Bayesian model selection framework. The toxicity order of dose combinations is continuously updated via a two-dimensional pool-adjacent-violators algorithm, and then the dose assignment for each incoming cohort is selected based on the optimal model under the dynamic toxicity order. We conduct extensive simulation studies to evaluate the performance of DOD in comparison with four other commonly used designs under various scenarios. Simulation results show that the two versions of DOD possess competitive performances in terms of correct MTD selection as well as safety, and we apply both versions of DOD to two real oncology trials for illustration.  相似文献   

11.
Various statistical models have been proposed for two‐dimensional dose finding in drug‐combination trials. However, it is often a dilemma to decide which model to use when conducting a particular drug‐combination trial. We make a comprehensive comparison of four dose‐finding methods, and for fairness, we apply the same dose‐finding algorithm under the four model structures. Through extensive simulation studies, we compare the operating characteristics of these methods in various practical scenarios. The results show that different models may lead to different design properties and that no single model performs uniformly better in all scenarios. As a result, we propose using Bayesian model averaging to overcome the arbitrariness of the model specification and enhance the robustness of the design. We assign a discrete probability mass to each model as the prior model probability and then estimate the toxicity probabilities of combined doses in the Bayesian model averaging framework. During the trial, we adaptively allocated each new cohort of patients to the most appropriate dose combination by comparing the posterior estimates of the toxicity probabilities with the prespecified toxicity target. The simulation results demonstrate that the Bayesian model averaging approach is robust under various scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In current industry practice, it is difficult to assess QT effects at potential therapeutic doses based on Phase I dose‐escalation trials in oncology due to data scarcity, particularly in combinations trials. In this paper, we propose to use dose‐concentration and concentration‐QT models jointly to model the exposures and effects of multiple drugs in combination. The fitted models then can be used to make early predictions for QT prolongation to aid choosing recommended dose combinations for further investigation. The models consider potential correlation between concentrations of test drugs and potential drug–drug interactions at PK and QT levels. In addition, this approach allows for the assessment of the probability of QT prolongation exceeding given thresholds of clinical significance. The performance of this approach was examined via simulation under practical scenarios for dose‐escalation trials for a combination of two drugs. The simulation results show that invaluable information of QT effects at therapeutic dose combinations can be gained by the proposed approaches. Early detection of dose combinations with substantial QT prolongation is evaluated effectively through the CIs of the predicted peak QT prolongation at each dose combination. Furthermore, the probability of QT prolongation exceeding a certain threshold is also computed to support early detection of safety signals while accounting for uncertainty associated with data from Phase I studies. While the prediction of QT effects is sensitive to the dose escalation process, the sensitivity and limited sample size should be considered when providing support to the decision‐making process for further developing certain dose combinations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities.  相似文献   

14.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   

15.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.  相似文献   

16.
In early phase dose‐finding cancer studies, the objective is to determine the maximum tolerated dose, defined as the highest dose with an acceptable dose‐limiting toxicity rate. Finding this dose for drug‐combination trials is complicated because of drug–drug interactions, and many trial designs have been proposed to address this issue. These designs rely on complicated statistical models that typically are not familiar to clinicians, and are rarely used in practice. The aim of this paper is to propose a Bayesian dose‐finding design for drug combination trials based on standard logistic regression. Under the proposed design, we continuously update the posterior estimates of the model parameters to make the decisions of dose assignment and early stopping. Simulation studies show that the proposed design is competitive and outperforms some existing designs. We also extend our design to handle delayed toxicities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Designs for early phase dose finding clinical trials typically are either phase I based on toxicity, or phase I-II based on toxicity and efficacy. These designs rely on the implicit assumption that the dose of an experimental agent chosen using these short-term outcomes will maximize the agent's long-term therapeutic success rate. In many clinical settings, this assumption is not true. A dose selected in an early phase oncology trial may give suboptimal progression-free survival or overall survival time, often due to a high rate of relapse following response. To address this problem, a new family of Bayesian generalized phase I-II designs is proposed. First, a conventional phase I-II design based on short-term outcomes is used to identify a set of candidate doses, rather than selecting one dose. Additional patients then are randomized among the candidates, patients are followed for a predefined longer time period, and a final dose is selected to maximize the long-term therapeutic success rate, defined in terms of duration of response. Dose-specific sample sizes in the randomization are determined adaptively to obtain a desired level of selection reliability. The design was motivated by a phase I-II trial to find an optimal dose of natural killer cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies. A simulation study shows that, under a range of scenarios in the context of this trial, the proposed design has much better performance than two conventional phase I-II designs.  相似文献   

18.
T-cell engagers are a class of oncology drugs which engage T-cells to initiate immune response against malignant cells. T-cell engagers have features that are unlike prior classes of oncology drugs (e.g., chemotherapies or targeted therapies), because (1) starting dose level often must be conservative due to immune-related side effects such as cytokine release syndrome (CRS); (2) dose level can usually be safely titrated higher as a result of subject's immune system adaptation after first exposure to lower dose; and (3) due to preventive management of CRS, these safety events rarely worsen to become dose limiting toxicities (DLTs). It is generally believed that for T-cell engagers the dose intensity of the starting dose and the peak dose intensity both correlate with improved efficacy. Existing dose finding methodologies are not designed to efficiently identify both the initial starting dose and peak dose intensity in a single trial. In this study, we propose a new trial design, dose intra-subject escalation to an event (DIETE) design, that can (1) estimate the maximum tolerated initial dose level (MTD1); and (2) incorporate systematic intra-subject dose-escalation to estimate the maximum tolerated dose level subsequent to adaptation induced by the initial dose level (MTD2) with a survival analysis approach. We compare our framework to similar methodologies and evaluate their key operating characteristics.  相似文献   

19.
Consider the problem of estimating a dose with a certain response rate. Many multistage dose‐finding designs for this problem were originally developed for oncology studies where the mean dose–response is strictly increasing in dose. In non‐oncology phase II dose‐finding studies, the dose–response curve often plateaus in the range of interest, and there are several doses with the mean response equal to the target. In this case, it is usually of interest to find the lowest of these doses because higher doses might have higher adverse event rates. It is often desirable to compare the response rate at the estimated target dose with a placebo and/or active control. We investigate which of the several known dose‐finding methods developed for oncology phase I trials is the most suitable when the dose–response curve plateaus. Some of the designs tend to spread the allocation among the doses on the plateau. Others, such as the continual reassessment method and the t‐statistic design, concentrate allocation at one of the doses with the t‐statistic design selecting the lowest dose on the plateau more frequently. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Instead of using traditional separate phase I and II trials, in this article, we propose using a parallel three-stage phase I/II design, incorporating a dose expansion approach to flexibly evaluate the safety and efficacy of dose levels, and to select the optimal dose. In the proposed design, both the toxicity and efficacy responses are binary endpoints. A 3+3-based procedure is used for initial period of dose escalation at stage 1; at this level, the dose can be expanded to stage 2 for exploratory efficacy studies of phase IIa, while simultaneously, the safety testing can advance to a higher dose level. A beta-binomial model is used to model the efficacy responses. There are two placebo-controlled randomization interim monitoring analyses at stage 2 to select the promising doses to be recommended to stage 3 for further efficacy studies of phase IIb. An adaptive randomization approach is used to assign more patients to doses with higher efficacy levels at stage 3. We examine the properties of the proposed design through extensive simulation studies by using R programming language, and also compare the new design with the conventional design and a competing adaptive Bayesian design. The simulation results show that our design can efficiently assign more patients to doses with higher efficacy levels and is superior to the two competing designs in terms of total sample size reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号