首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concerns have been raised regarding the safety of young children who may contact arsenic residues while playing on and around chromated copper arsenate (CCA)-treated wood playsets and decks. Although CCA registrants voluntarily canceled the production of treated wood for residential use in 2003, the potential for exposure from existing structures and surrounding soil still poses concerns. The EPA's Office of Research and Development developed and applied the probabilistic Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood) to estimate children's absorbed dose of arsenic from CCA. Skin contact with, and nondietary ingestion of, arsenic in soil and wood residues were considered for the population of children in the United States who frequently contact CCA-treated wood playsets and decks. Model analyses were conducted to assess the range in population estimates and the impact of potential mitigation strategies such as the use of sealants and hand washing after play events. The results show predicted central values for lifetime annual average daily dose values for arsenic ranging from 10(-6) to 10(-5) mg/kg/day, with predicted 95th percentiles on the order of 10(-5) mg/kg/day. There were several orders of magnitude between lower and upper percentiles. Residue ingestion via hand-to-mouth contact was determined to be the most significant exposure route for most scenarios. Results of several alternative scenarios were similar to baseline results, except for the scenario with greatly reduced residue concentrations through hypothetical wood sealant applications; in this scenario, exposures were lower, and the soil ingestion route dominated. SHEDS-Wood estimates are typically consistent with, or within the range of, other CCA exposure models.  相似文献   

2.
CCA-treated wood is widely used in the fabrication of outdoor decks and playground equipment. Because arsenic can be removed from the surface of CCA-treated wood both by physical contact and by leaching, it is important to determine whether children who play on such structures may ingest arsenic in quantities sufficient to be of public health concern. Based on a review of existing studies, it is estimated that arsenic doses in amounts of tens of micrograms per day may be incurred by children having realistic levels of exposure to CCA-treated decks and playground structures. The most important exposure pathway appears to be oral ingestion of arsenic that is first dislodged from the wood by direct hand contact, then transferred to the mouth by children's hand-to-mouth activity. The next most important pathway appears to be dermal absorption of arsenic, while ingestion of soil that has become contaminated by leaching from CCA-treated structures appears to be of lesser importance, except possibly in the case of children with pica. Considerable uncertainty, however, is associated with quantitative estimates of children's arsenic exposure from CCA-treated wood. Priorities for refining estimates of arsenic dose include detailed studies of the hand-to-mouth transfer of arsenic, studies of the dermal and gastrointestinal absorption of dislodgeable arsenic, and studies in which doses of arsenic to children playing in contact with CCA-treated wood are directly determined by measurement of arsenic in their urine, hair, and nails.  相似文献   

3.
Daily soil/dust ingestion rates typically used in exposure and risk assessments are based on tracer element studies, which have a number of limitations and do not separate contributions from soil and dust. This article presents an alternate approach of modeling soil and dust ingestion via hand and object mouthing of children, using EPA's SHEDS model. Results for children 3 to <6 years old show that mean and 95th percentile total ingestion of soil and dust values are 68 and 224 mg/day, respectively; mean from soil ingestion, hand‐to‐mouth dust ingestion, and object‐to‐mouth dust ingestion are 41 mg/day, 20 mg/day, and 7 mg/day, respectively. In general, hand‐to‐mouth soil ingestion was the most important pathway, followed by hand‐to‐mouth dust ingestion, then object‐to‐mouth dust ingestion. The variability results are most sensitive to inputs on surface loadings, soil‐skin adherence, hand mouthing frequency, and hand washing frequency. The predicted total soil and dust ingestion fits a lognormal distribution with geometric mean = 35.7 and geometric standard deviation = 3.3. There are two uncertainty distributions, one below the 20th percentile and the other above. Modeled uncertainties ranged within a factor of 3–30. Mean modeled estimates for soil and dust ingestion are consistent with past information but lower than the central values recommended in the 2008 EPA Child‐Specific Exposure Factors Handbook. This new modeling approach, which predicts soil and dust ingestion by pathway, source type, population group, geographic location, and other factors, offers a better characterization of exposures relevant to health risk assessments as compared to using a single value.  相似文献   

4.
Vinyl chloride (VC) was used as a propellant in a limited percentage of aerosol hairspray products in the United States from approximately 1967 to 1973. The question has arisen whether occupational exposures of hairdressers to VC-containing hairsprays in hair salons were sufficient to increase the risk for developing hepatic angiosarcoma (HAS). Transient two-zone and steady-state three-zone models were used to estimate the historical airborne concentration of VC for individual hairdressers using hairspray as well as estimated contributions from other hairdressers in the same salon. Concentrations of VC were modeled for small, medium, and large salons, as well as a representative home salon. Model inputs were determined using published literature, and variability in these inputs was also considered using Monte Carlo techniques. The 95th percentile for the daily time-weighted average exposure for small, medium, and large salons, assuming a market-share fraction of VC-containing hairspray use from the Monte Carlo analysis, was about 0.3 ppm, and for the home salon scenario was 0.1 ppm. The 95th percentile value for the cumulative lifetime exposure of the hairdressers was 2.8 ppm-years for the home salon scenario and 2.0 ppm-years for the small, medium, and large salon scenarios. If using the assumption that all hairsprays used in a salon contained VC, the 95th percentile of the theoretical lifetime cumulative dose was estimated to be 52–79 ppm-years. Estimated lifetime doses were all below the threshold dose for HAS of about 300 to 500 ppm-years reported in the published epidemiology literature.  相似文献   

5.
Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure scenarios, skin surface loading and unloading rates, and contaminant movement through the epidermis. In this article we (1) develop and test a finite-difference model of contaminant transport through the epidermis; (2) develop archetypal exposure scenarios based on behavioral data to estimate characteristic loading and unloading rates; and (3) quantify 24-hour accumulation below the epidermis by applying a Monte Carlo simulation of these archetypal exposure scenarios. The numerical model, called Transient Transport through the epiDERMis (TTDERM), allows us to account for variable exposure times and time between exposures, temporal and spatial variations in skin and compound properties, and uncertainty in model parameters. Using TTDERM we investigate the use of a macro-activity parameter (cumulative contact time) for predicting daily (24-hour) integrated uptake of pesticides during complex exposure scenarios. For characteristic child behaviors and hand loading and unloading rates, we find that a power law represents the relationship between cumulative contact time and cumulative mass transport through the skin. With almost no loss of reliability, this simple relationship can be used in place of the more complex micro-activity simulations that require activity data on one- to five-minute intervals. The methods developed in this study can be used to guide dermal exposure model refinements and exposure measurement study design.  相似文献   

6.
This article presents a general model for estimating population heterogeneity and "lack of knowledge" uncertainty in methylmercury (MeHg) exposure assessments using two-dimensional Monte Carlo analysis. Using data from fish-consuming populations in Bangladesh, Brazil, Sweden, and the United Kingdom, predictive model estimates of dietary MeHg exposures were compared against those derived from biomarkers (i.e., [Hg]hair and [Hg]blood). By disaggregating parameter uncertainty into components (i.e., population heterogeneity, measurement error, recall error, and sampling error) estimates were obtained of the contribution of each component to the overall uncertainty. Steady-state diet:hair and diet:blood MeHg exposure ratios were estimated for each population and were used to develop distributions useful for conducting biomarker-based probabilistic assessments of MeHg exposure. The 5th and 95th percentile modeled MeHg exposure estimates around mean population exposure from each of the four study populations are presented to demonstrate lack of knowledge uncertainty about a best estimate for a true mean. Results from a U.K. study population showed that a predictive dietary model resulted in a 74% lower lack of knowledge uncertainty around a central mean estimate relative to a hair biomarker model, and also in a 31% lower lack of knowledge uncertainty around central mean estimate relative to a blood biomarker model. Similar results were obtained for the Brazil and Bangladesh populations. Such analyses, used here to evaluate alternative models of dietary MeHg exposure, can be used to refine exposure instruments, improve information used in site management and remediation decision making, and identify sources of uncertainty in risk estimates.  相似文献   

7.
This article demonstrates application of sensitivity analysis to risk assessment models with two-dimensional probabilistic frameworks that distinguish between variability and uncertainty. A microbial food safety process risk (MFSPR) model is used as a test bed. The process of identifying key controllable inputs and key sources of uncertainty using sensitivity analysis is challenged by typical characteristics of MFSPR models such as nonlinearity, thresholds, interactions, and categorical inputs. Among many available sensitivity analysis methods, analysis of variance (ANOVA) is evaluated in comparison to commonly used methods based on correlation coefficients. In a two-dimensional risk model, the identification of key controllable inputs that can be prioritized with respect to risk management is confounded by uncertainty. However, as shown here, ANOVA provided robust insights regarding controllable inputs most likely to lead to effective risk reduction despite uncertainty. ANOVA appropriately selected the top six important inputs, while correlation-based methods provided misleading insights. Bootstrap simulation is used to quantify uncertainty in ranks of inputs due to sampling error. For the selected sample size, differences in F values of 60% or more were associated with clear differences in rank order between inputs. Sensitivity analysis results identified inputs related to the storage of ground beef servings at home as the most important. Risk management recommendations are suggested in the form of a consumer advisory for better handling and storage practices.  相似文献   

8.
A quantitative assessment of the exposure to Listeria monocytogenes from cold-smoked salmon (CSS) consumption in France is developed. The general framework is a second-order (or two-dimensional) Monte Carlo simulation, which characterizes the uncertainty and variability of the exposure estimate. The model takes into account the competitive bacterial growth between L. monocytogenes and the background competitive flora from the end of the production line to the consumer phase. An original algorithm is proposed to integrate this growth in conditions of varying temperature. As part of a more general project led by the French Food Safety Agency (Afssa), specific data were acquired and modeled for this quantitative exposure assessment model, particularly time-temperature profiles, prevalence data, and contamination-level data. The sensitivity analysis points out the main influence of the mean temperature in household refrigerators and the prevalence of contaminated CSS on the exposure level. The outputs of this model can be used as inputs for further risk assessment.  相似文献   

9.
This study illustrates a newly developed methodology, as a part of the U.S. EPA ecological risk assessment (ERA) framework, to predict exposure concentrations in a marine environment due to underwater release of oil and gas. It combines the hydrodynamics of underwater blowout, weathering algorithms, and multimedia fate and transport to measure the exposure concentration. Naphthalene and methane are used as surrogate compounds for oil and gas, respectively. Uncertainties are accounted for in multimedia input parameters in the analysis. The 95th percentile of the exposure concentration (EC95%) is taken as the representative exposure concentration for the risk estimation. A bootstrapping method is utilized to characterize EC95% and associated uncertainty. The toxicity data of 19 species available in the literature are used to calculate the 5th percentile of the predicted no observed effect concentration (PNEC5%) by employing the bootstrapping method. The risk is characterized by transforming the risk quotient (RQ), which is the ratio of EC95% to PNEC5%, into a cumulative risk distribution. This article describes a probabilistic basis for the ERA, which is essential from risk management and decision‐making viewpoints. Two case studies of underwater oil and gas mixture release, and oil release with no gaseous mixture are used to show the systematic implementation of the methodology, elements of ERA, and the probabilistic method in assessing and characterizing the risk.  相似文献   

10.
Concern about the degree of uncertainty and potential conservatism in deterministic point estimates of risk has prompted researchers to turn increasingly to probabilistic methods for risk assessment. With Monte Carlo simulation techniques, distributions of risk reflecting uncertainty and/or variability are generated as an alternative. In this paper the compounding of conservatism(1) between the level associated with point estimate inputs selected from probability distributions and the level associated with the deterministic value of risk calculated using these inputs is explored. Two measures of compounded conservatism are compared and contrasted. The first measure considered, F , is defined as the ratio of the risk value, R d, calculated deterministically as a function of n inputs each at the j th percentile of its probability distribution, and the risk value, R j that falls at the j th percentile of the simulated risk distribution (i.e., F=Rd/Rj). The percentile of the simulated risk distribution which corresponds to the deterministic value, Rd , serves as a second measure of compounded conservatism. Analytical results for simple products of lognormal distributions are presented. In addition, a numerical treatment of several complex cases is presented using five simulation analyses from the literature to illustrate. Overall, there are cases in which conservatism compounds dramatically for deterministic point estimates of risk constructed from upper percentiles of input parameters, as well as those for which the effect is less notable. The analytical and numerical techniques discussed are intended to help analysts explore the factors that influence the magnitude of compounding conservatism in specific cases.  相似文献   

11.
We describe a one-dimensional probabilistic model of the role of domestic food handling behaviors on salmonellosis risk associated with the consumption of eggs and egg-containing foods. Six categories of egg-containing foods were defined based on the amount of egg contained in the food, whether eggs are pooled, and the degree of cooking practiced by consumers. We used bootstrap simulation to quantify uncertainty in risk estimates due to sampling error, and sensitivity analysis to identify key sources of variability and uncertainty in the model. Because of typical model characteristics such as nonlinearity, interaction between inputs, thresholds, and saturation points, Sobol's method, a novel sensitivity analysis approach, was used to identify key sources of variability. Based on the mean probability of illness, examples of foods from the food categories ranked from most to least risk of illness were: (1) home-made salad dressings/ice cream; (2) fried eggs/boiled eggs; (3) omelettes; and (4) baked foods/breads. For food categories that may include uncooked eggs (e.g., home-made salad dressings/ice cream), consumer handling conditions such as storage time and temperature after food preparation were the key sources of variability. In contrast, for food categories associated with undercooked eggs (e.g., fried/soft-boiled eggs), the initial level of Salmonella contamination and the log10 reduction due to cooking were the key sources of variability. Important sources of uncertainty varied with both the risk percentile and the food category under consideration. This work adds to previous risk assessments focused on egg production and storage practices, and provides a science-based approach to inform consumer risk communications regarding safe egg handling practices.  相似文献   

12.
In a quantitative model with uncertain inputs, the uncertainty of the output can be summarized by a risk measure. We propose a sensitivity analysis method based on derivatives of the output risk measure, in the direction of model inputs. This produces a global sensitivity measure, explicitly linking sensitivity and uncertainty analyses. We focus on the case of distortion risk measures, defined as weighted averages of output percentiles, and prove a representation of the sensitivity measure that can be evaluated on a Monte Carlo sample, as a weighted average of gradients over the input space. When the analytical model is unknown or hard to work with, nonparametric techniques are used for gradient estimation. This process is demonstrated through the example of a nonlinear insurance loss model. Furthermore, the proposed framework is extended in order to measure sensitivity to constant model parameters, uncertain statistical parameters, and random factors driving dependence between model inputs.  相似文献   

13.
Roy L. Smith 《Risk analysis》1994,14(4):433-439
This work presents a comparison of probabilistic and deterministic health risk estimates based on data from an industrial site in the northeastern United States. The risk assessment considered exposures to volatile solvents by drinking water ingestion and showering. Probability densities used as inputs included concentrations, contact rates, and exposure frequencies; dose-response inputs were single values. Deterministic risk estimates were calculated by the "reasonable maximum exposure" (RME) approach recommended by the EPA Superfund program. The RME non-carcinogenic risk fell between the 90th and the 95th percentile of the probability density; the RME cancer risk fell between the 95th percentile and the maximum. These results suggest that in this case (1) EPA's deterministic RME risk was reasonably protective, (2) results of probabilistic and deterministic calculations were consistent, and (3) commercially available software Monte Carlo software effectively provided multiple risk estimates recommended by recent EPA guidance.  相似文献   

14.
Probabilistic risk assessments are enjoying increasing popularity as a tool to characterize the health hazards associated with exposure to chemicals in the environment. Because probabilistic analyses provide much more information to the risk manager than standard “point” risk estimates, this approach has generally been heralded as one which could significantly improve the conduct of health risk assessments. The primary obstacles to replacing point estimates with probabilistic techniques include a general lack of familiarity with the approach and a lack of regulatory policy and guidance. This paper discusses some of the advantages and disadvantages of the point estimate vs. probabilistic approach. Three case studies are presented which contrast and compare the results of each. The first addresses the risks associated with household exposure to volatile chemicals in tapwater. The second evaluates airborne dioxin emissions which can enter the food-chain. The third illustrates how to derive health-based cleanup levels for dioxin in soil. It is shown that, based on the results of Monte Carlo analyses of probability density functions (PDFs), the point estimate approach required by most regulatory agencies will nearly always overpredict the risk for the 95th percentile person by a factor of up to 5. When the assessment requires consideration of 10 or more exposure variables, the point estimate approach will often predict risks representative of the 99.9th percentile person rather than the 50th or 95th percentile person. This paper recommends a number of data distributions for various exposure variables that we believe are now sufficiently well understood to be used with confidence in most exposure assessments. A list of exposure variables that may require additional research before adequate data distributions can be developed are also discussed.  相似文献   

15.
Information of exposure factors used in quantitative risk assessments has previously been compiled and reported for U.S. and European populations. However, due to the advancement of science and knowledge, these reports are in continuous need of updating with new data. Equally important is the change over time of many exposure factors related to both physiological characteristics and human behavior. Body weight, skin surface, time use, and dietary habits are some of the most obvious examples covered here. A wealth of data is available from literature not primarily gathered for the purpose of risk assessment. Here we review a number of key exposure factors and compare these factors between northern Europe—here represented by Sweden—and the United States. Many previous compilations of exposure factor data focus on interindividual variability and variability between sexes and age groups, while uncertainty is mainly dealt with in a qualitative way. In this article variability is assessed along with uncertainty. As estimates of central tendency and interindividual variability, mean, standard deviation, skewness, kurtosis, and multiple percentiles were calculated, while uncertainty was characterized using 95% confidence intervals for these parameters. The presented statistics are appropriate for use in deterministic analyses using point estimates for each input parameter as well as in probabilistic assessments.  相似文献   

16.
It has recently been suggested that "standard" data distributions for key exposure variables should be developed wherever appropriate for use in probabilistic or "Monte Carlo" exposure analyses. Soil-on-skin adherence estimates represent an ideal candidate for development of a standard data distribution: There are several readily available studies which offer a consistent pattern of reported results, and more importantly, soil adherence to skin is likely to vary little from site-to-site. In this paper, we thoroughly review each of the published soil adherence studies with respect to study design, sampling, and analytical methods, and level of confidence in the reported results. Based on these studies, probability density functions (PDF) of soil adherence values were examined for different age groups and different sampling techniques. The soil adherence PDF developed from adult data was found to resemble closely the soil adherence PDF based on child data in terms of both central tendency (mean = 0.49 and 0.63 mg-soil/cm2-skin, respectively) and 95th percentile values (1.6 and 2.4 mg-soil/cm2-skin, respectively). Accordingly, a single, "standard" PDF is presented based on all data collected for all age groups. This standard PDF is lognormally distributed; the arithmetic mean and standard deviation are 0.52 ± 0.9 mg-soil/cm2-skin. Since our review of the literature indicates that soil adherence under environmental conditions will be minimally influenced by age, sex, soil type, or particle size, this PDF should be considered applicable to all settings. The 50th and 95th percentile values of the standard PDF (0.25 and 1.7 mg-soil/cm2-skin, respectively) are very similar to recent U.S. EPA estimates of "average" and "upper-bound" soil adherence (0.2 and 1.0 mg-soil/cm2-skin, respectively).  相似文献   

17.
《Risk analysis》2018,38(6):1128-1142
Lumber Liquidators (LL) Chinese‐manufactured laminate flooring (CLF) has been installed in >400,000 U.S. homes over the last decade. To characterize potential associated formaldehyde exposures and cancer risks, chamber emissions data were collected from 399 new LL CLF, and from LL CLF installed in 899 homes in which measured aggregate indoor formaldehyde concentrations exceeded 100 μg/m3 from a total of 17,867 homes screened. Data from both sources were combined to characterize LL CLF flooring‐associated formaldehyde emissions from new boards and installed boards. New flooring had an average (±SD ) emission rate of 61.3 ± 52.1 μg/m2‐hour; >one‐year installed boards had ∼threefold lower emission rates. Estimated emission rates for the 899 homes and corresponding data from questionnaires were used as inputs to a single‐compartment, steady‐state mass‐balance model to estimate corresponding residence‐specific TWA formaldehyde concentrations and potential resident exposures. Only ∼0.7% of those homes had estimated acute formaldehyde concentrations >100 μg/m3 immediately after LL CLF installation. The TWA daily formaldehyde inhalation exposure within the 899 homes was estimated to be 17 μg/day using California Proposition 65 default methods to extrapolate cancer risk (below the regulation “no significant risk level” of 40 μg/day). Using a U.S. Environmental Protection Agency linear cancer risk model, 50th and 95th percentile values of expected lifetime cancer risk for residents of these homes were estimated to be 0.33 and 1.2 per 100,000 exposed, respectively. Based on more recent data and verified nonlinear cancer risk assessment models, LL CLF formaldehyde emissions pose virtually no cancer risk to affected consumers.  相似文献   

18.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

19.
Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations.  相似文献   

20.
Children may be more susceptible to toxicity from some environmental chemicals than adults. This susceptibility may occur during narrow age periods (windows), which can last from days to years depending on the toxicant. Breathing rates specific to narrow age periods are useful to assess inhalation dose during suspected windows of susceptibility. Because existing breathing rates used in risk assessment are typically for broad age ranges or are based on data not representative of the population, we derived daily breathing rates for narrow age ranges of children designed to be more representative of the current U.S. children's population. These rates were derived using the metabolic conversion method of Layton (1993) and energy intake data adjusted to represent the U.S. population from a relatively recent dietary survey (CSFII 1994–1996, 1998). We calculated conversion factors more specific to children than those previously used. Both nonnormalized (L/day) and normalized (L/kg-day) breathing rates were derived and found comparable to rates derived using energy estimates that are accurate for the individuals sampled but not representative of the population. Estimates of breathing rate variability within a population can be used with stochastic techniques to characterize the range of risk in the population from inhalation exposures. For each age and age-gender group, we present the mean, standard error of the mean, percentiles (50th, 90th, and 95th), geometric mean, standard deviation, 95th percentile, and best-fit parametric models of the breathing rate distributions. The standard errors characterize uncertainty in the parameter estimate, while the percentiles describe the combined interindividual and intra-individual variability of the sampled population. These breathing rates can be used for risk assessment of subchronic and chronic inhalation exposures of narrow age groups of children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号