首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.  相似文献   

2.
U.S. Environment Protection Agency benchmark doses for dichotomous cancer responses are often estimated using a multistage model based on a monotonic dose‐response assumption. To account for model uncertainty in the estimation process, several model averaging methods have been proposed for risk assessment. In this article, we extend the usual parameter space in the multistage model for monotonicity to allow for the possibility of a hormetic dose‐response relationship. Bayesian model averaging is used to estimate the benchmark dose and to provide posterior probabilities for monotonicity versus hormesis. Simulation studies show that the newly proposed method provides robust point and interval estimation of a benchmark dose in the presence or absence of hormesis. We also apply the method to two data sets on carcinogenic response of rats to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin.  相似文献   

3.
Effects of Exposure Imprecision on Estimation of the Benchmark Dose   总被引:1,自引:0,他引:1  
In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study on the health effects of prenatal mercury exposure.  相似文献   

4.
A current trend in risk assessment for systemic toxicity (noncancer) endpoints is to utilize the observable range of the dose-effect curve in order to estimate the likelihood of obtaining effects at lower concentrations. Methods to accomplish this endeavor are typically based on variability in either the effects of fixed doses (benchmark approaches), or on variability in the doses producing a fixed effect (probabilistic or tolerance-distribution approaches). The latter method may be particularly desirable because it can be used to determine variability in the effect of an agent in a population, which is an important goal of risk assessment. This method of analysis, however, has typically been accomplished using dose-effect data from individual subjects, which can be impractical in toxicology. A new method is therefore presented that can use traditional groups-design data to generate a set of dose-effect functions. Population tolerances for a specific effect can then be estimated from these model dose-effect functions. It is based on the randomization test, which assesses the generality of a data set by comparing it to a data set constructed from randomized combinations of single point estimates. The present article describes an iterative line-fitting program that generates such a data set and then uses it to provide risk assessments for two pesticides, triadimefon and carbaryl. The effects of these pesticides were studied on the locomotor activity of laboratory rats, a common neurobehavioral end point. Triadimefon produced dose-dependent increases in activity, while carbaryl produced dose-dependent decreases in activity. Risk figures derived from the empirical distribution of individual dose-effect functions were compared to those from the iterative line-fitting program. The results indicate that the method generates comparable risk figures, although potential limitations are also described.  相似文献   

5.
各国央行包括美联储的利率调整和变动就是基准利率风险.基准利率的变化势必要导致金融资产定价的变动和风险溢价.本文通过自回归模型AR测算随时间变化的利率跳跃次数,确定基准利率跳跃的概率,利用伽马分布和正态分布分别测算基准利率跳跃的时间与幅度,根据利率跳跃的概率、时间和幅度确定基准利率跳跃风险溢价,建立基于时变跳跃次数的基准利率跳跃风险溢价测算模型,并利用中国上海证券交易所国债7天回购利率数据进行实证研究.本文创新与特色:1)通过自回归模型AR测算时变的利率跳跃次数,测算利率发生跳跃的概率,确定基准利率跳跃风险溢价,揭示跳跃次数的动态变化规律,反映历史利率跳跃行为对未来利率跳跃行为的影响,改变现有研究以常数跳跃次数测算利率跳跃概率、无法真实反映利率跳跃的频繁程度,导致利率跳跃概率及利率跳跃风险溢价测算不准的弊端.2)研究表明,现有研究的常数跳跃次数仅仅是本文跳跃次数测算模型在参数ρ、γ等于0时的特例.3)通过利率跳跃的概率、时间和幅度确定基准利率的跳跃风险溢价,解决基准利率跳跃风险补偿的测算问题.  相似文献   

6.
The BMD (benchmark dose) method that is used in risk assessment of chemical compounds was introduced by Crump (1984) and is based on dose-response modeling. To take uncertainty in the data and model fitting into account, the lower confidence bound of the BMD estimate (BMDL) is suggested to be used as a point of departure in health risk assessments. In this article, we study how to design optimum experiments for applying the BMD method for continuous data. We exemplify our approach by considering the class of Hill models. The main aim is to study whether an increased number of dose groups and at the same time a decreased number of animals in each dose group improves conditions for estimating the benchmark dose. Since Hill models are nonlinear, the optimum design depends on the values of the unknown parameters. That is why we consider Bayesian designs and assume that the parameter vector has a prior distribution. A natural design criterion is to minimize the expected variance of the BMD estimator. We present an example where we calculate the value of the design criterion for several designs and try to find out how the number of dose groups, the number of animals in the dose groups, and the choice of doses affects this value for different Hill curves. It follows from our calculations that to avoid the risk of unfavorable dose placements, it is good to use designs with more than four dose groups. We can also conclude that any additional information about the expected dose-response curve, e.g., information obtained from studies made in the past, should be taken into account when planning a study because it can improve the design.  相似文献   

7.
Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose‐response modeling. It is a well‐known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low‐dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal‐response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap‐based confidence limits for the BMD. We explore the confidence limits’ small‐sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty.  相似文献   

8.
With the increased availability of toxicological hazard information arising from multiple experimental sources, risk assessors are often confronted with the challenge of synthesizing all available scientific information into an analysis. This analysis is further complicated because significant between-source heterogeneity/lab-to-lab variability is often evident. We estimate benchmark doses using hierarchical models to account for the observed heterogeneity. These models are used to construct source-specific and population-average estimates of the benchmark dose (BMD). This is illustrated with an analysis of the U.S. EPA Region IX's reference toxicity database on the effects of sodium chloride on reproduction in Ceriodaphnia dubia. Results show that such models may effectively account for the lab-source heterogeneity while producing BMD estimates that more truly reflect the variability of the system under study. Failing to account for such heterogeneity may result in estimates having confidence intervals that are overly narrow.  相似文献   

9.
Since the National Food Safety Initiative of 1997, risk assessment has been an important issue in food safety areas. Microbial risk assessment is a systematic process for describing and quantifying a potential to cause adverse health effects associated with exposure to microorganisms. Various dose-response models for estimating microbial risks have been investigated. We have considered four two-parameter models and four three-parameter models in order to evaluate variability among the models for microbial risk assessment using infectivity and illness data from studies with human volunteers exposed to a variety of microbial pathogens. Model variability is measured in terms of estimated ED01s and ED10s, with the view that these effective dose levels correspond to the lower and upper limits of the 1% to 10% risk range generally recommended for establishing benchmark doses in risk assessment. Parameters of the statistical models are estimated using the maximum likelihood method. In this article a weighted average of effective dose estimates from eight two- and three-parameter dose-response models, with weights determined by the Kullback information criterion, is proposed to address model uncertainties in microbial risk assessment. The proposed procedures for incorporating model uncertainties and making inferences are illustrated with human infection/illness dose-response data sets.  相似文献   

10.
Increasingly, dose‐response data are being evaluated with the benchmark dose (BMD) approach rather than by the less precise no‐observed‐adverse‐effect‐level (NOAEL) approach. However, the basis for designing animal experiments, using equally sized dose groups, is still primed for the NOAEL approach. The major objective here was to assess the impact of using dose groups of unequal size on both the quality of the BMD and overall animal distress. We examined study designs with a total number of 200 animals distributed in four dose groups employing quantal data generated by Monte Carlo simulations. Placing more animals at doses close to the targeted BMD provided an estimate of BMD that was slightly better than the standard design with equally sized dose groups. In situations involving a clear dose‐response, this translates into fewer animals receiving high doses and thus less overall animal distress. Accordingly, in connection with risk and safety assessment, animal distress can potentially be reduced by distributing the animals appropriately between dose groups without decreasing the quality of the information obtained.  相似文献   

11.
D. Krewski  Y. Zhu 《Risk analysis》1994,14(4):613-627
Reproductive and developmental anomalies induced by toxic chemicals may be identified using laboratory experiments with small mammalian species such as rats, mice, and rabbits. In this paper, dose-response models for correlated multinomial data arising in studies of developmental toxicity are discussed. These models provide a joint characterization of dose-response relationships for both embryolethality and teratogenicity. Generalized estimating equations are used for model fitting, incorporating overdispersion relative to the multinomial variation due to correlation among littermates. The fitted dose-response models are used to estimate benchmark doses in a series of experiments conducted by the U.S. National Toxicology Program. Joint analysis of prenatal death and fetal malformation using an extended Dirichlet-trinomial covariance function to characterize overdispersion appears to have statistical and computational advantages over separate analysis of these two end points. Benchmark doses based on overall toxicity are below the minimum of those for prenatal death and fetal malformation and may, thus, be preferred for risk assessment purposes.  相似文献   

12.
Dose‐response analysis of binary developmental data (e.g., implant loss, fetal abnormalities) is best done using individual fetus data (identified to litter) or litter‐specific statistics such as number of offspring per litter and proportion abnormal. However, such data are not often available to risk assessors. Scientific articles usually present only dose‐group summaries for the number or average proportion abnormal and the total number of fetuses. Without litter‐specific data, it is not possible to estimate variances correctly (often characterized as a problem of overdispersion, intralitter correlation, or “litter effect”). However, it is possible to use group summary data when the design effect has been estimated for each dose group. Previous studies have demonstrated useful dose‐response and trend test analyses based on design effect estimates using litter‐specific data from the same study. This simplifies the analysis but does not help when litter‐specific data are unavailable. In the present study, we show that summary data on fetal malformations can be adjusted satisfactorily using estimates of the design effect based on historical data. When adjusted data are then analyzed with models designed for binomial responses, the resulting benchmark doses are similar to those obtained from analyzing litter‐level data with nested dichotomous models.  相似文献   

13.
Quantitative risk assessment often begins with an estimate of the exposure or dose associated with a particular risk level from which exposure levels posing low risk to populations can be extrapolated. For continuous exposures, this value, the benchmark dose, is often defined by a specified increase (or decrease) from the median or mean response at no exposure. This method of calculating the benchmark dose does not take into account the response distribution and, consequently, cannot be interpreted based upon probability statements of the target population. We investigate quantile regression as an alternative to the use of the median or mean regression. By defining the dose–response quantile relationship and an impairment threshold, we specify a benchmark dose as the dose associated with a specified probability that the population will have a response equal to or more extreme than the specified impairment threshold. In addition, in an effort to minimize model uncertainty, we use Bayesian monotonic semiparametric regression to define the exposure–response quantile relationship, which gives the model flexibility to estimate the quantal dose–response function. We describe this methodology and apply it to both epidemiology and toxicology data.  相似文献   

14.
Quantitative risk assessment involves the determination of a safe level of exposure. Recent techniques use the estimated dose-response curve to estimate such a safe dose level. Although such methods have attractive features, a low-dose extrapolation is highly dependent on the model choice. Fractional polynomials, basically being a set of (generalized) linear models, are a nice extension of classical polynomials, providing the necessary flexibility to estimate the dose-response curve. Typically, one selects the best-fitting model in this set of polynomials and proceeds as if no model selection were carried out. We show that model averaging using a set of fractional polynomials reduces bias and has better precision in estimating a safe level of exposure (say, the benchmark dose), as compared to an estimator from the selected best model. To estimate a lower limit of this benchmark dose, an approximation of the variance of the model-averaged estimator, as proposed by Burnham and Anderson, can be used. However, this is a conservative method, often resulting in unrealistically low safe doses. Therefore, a bootstrap-based method to more accurately estimate the variance of the model averaged parameter is proposed.  相似文献   

15.
Reassessing Benzene Cancer Risks Using Internal Doses   总被引:1,自引:0,他引:1  
Human cancer risks from benzene exposure have previously been estimated by regulatory agencies based primarily on epidemiological data, with supporting evidence provided by animal bioassay data. This paper reexamines the animal-based risk assessments for benzene using physiologically-based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. It demonstrates that internal doses (interpreted as total benzene metabolites formed) from oral gavage experiments in mice are well predicted by a PBPK model developed by Travis et al. Both the data and the model outputs can also be accurately described by the simple nonlinear regression model total metabolites = 76.4x/(80.75 + x), where x = administered dose in mg/kg/day. Thus, PBPK modeling validates the use of such nonlinear regression models, previously used by Bailer and Hoel. An important finding is that refitting the linearized multistage (LMS) model family to internal doses and observed responses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to cubic, leading to low-dose risk estimates smaller than in previous risk assessments. This is consistent with the conclusion for mice from the Bailer and Hoel analysis. An innovation in this paper is estimation of internal doses for humans based on a PBPK model (and the regression model approximating it) rather than on interspecies dose conversions. Estimates of human risks at low doses are reduced by the use of internal dose estimates when the estimates are obtained from a PBPK model, in contrast to Bailer and Hoel's findings based on interspecies dose conversion. Sensitivity analyses and comparisons with epidemiological data and risk models suggest that our finding of a nonlinear MLE dose-response curve at low doses is robust to changes in assumptions and more consistent with epidemiological data than earlier risk models.  相似文献   

16.
The benchmark dose (BMD) is an exposure level that would induce a small risk increase (BMR level) above the background. The BMD approach to deriving a reference dose for risk assessment of noncancer effects is advantageous in that the estimate of BMD is not restricted to experimental doses and utilizes most available dose-response information. To quantify statistical uncertainty of a BMD estimate, we often calculate and report its lower confidence limit (i.e., BMDL), and may even consider it as a more conservative alternative to BMD itself. Computation of BMDL may involve normal confidence limits to BMD in conjunction with the delta method. Therefore, factors, such as small sample size and nonlinearity in model parameters, can affect the performance of the delta method BMDL, and alternative methods are useful. In this article, we propose a bootstrap method to estimate BMDL utilizing a scheme that consists of a resampling of residuals after model fitting and a one-step formula for parameter estimation. We illustrate the method with clustered binary data from developmental toxicity experiments. Our analysis shows that with moderately elevated dose-response data, the distribution of BMD estimator tends to be left-skewed and bootstrap BMDL s are smaller than the delta method BMDL s on average, hence quantifying risk more conservatively. Statistically, the bootstrap BMDL quantifies the uncertainty of the true BMD more honestly than the delta method BMDL as its coverage probability is closer to the nominal level than that of delta method BMDL. We find that BMD and BMDL estimates are generally insensitive to model choices provided that the models fit the data comparably well near the region of BMD. Our analysis also suggests that, in the presence of a significant and moderately strong dose-response relationship, the developmental toxicity experiments under the standard protocol support dose-response assessment at 5% BMR for BMD and 95% confidence level for BMDL.  相似文献   

17.
The paper applies classical statistical principles to yield new tools for risk assessment and makes new use of epidemiological data for human risk assessment. An extensive clinical and epidemiological study of workers engaged in the manufacturing and formulation of aldrin and dieldrin provides occupational hygiene and biological monitoring data on individual exposures over the years of employment and provides unusually accurate measures of individual lifetime average daily doses. In the cancer dose-response modeling, each worker is treated as a separate experimental unit with his own unique dose. Maximum likelihood estimates of added cancer risk are calculated for multistage, multistage-Weibull, and proportional hazards models. Distributional characterizations of added cancer risk are based on bootstrap and relative likelihood techniques. The cancer mortality data on these male workers suggest that low-dose exposures to aldrin and dieldrin do not significantly increase human cancer risk and may even decrease the human hazard rate for all types of cancer combined at low doses (e.g., 1 g/kg/day). The apparent hormetic effect in the best fitting dose-response models for this data set is statistically significant. The decrease in cancer risk at low doses of aldrin and dieldrin is in sharp contrast to the U.S. Environmental Protection Agency's upper bound on cancer potency based on mouse liver tumors. The EPA's upper bound implies that lifetime average daily doses of 0.0000625 and 0.00625 g/kg body weight/day would correspond to increased cancer risks of 0.000001 and 0.0001, respectively. However, the best estimate from the Pernis epidemiological data is that there is no increase in cancer risk in these workers at these doses or even at doses as large as 2 g/kg/day.  相似文献   

18.
Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.  相似文献   

19.
We present a critical assessment of the benchmark dose (BMD) method introduced by Crump(1) as an alternative method for setting a characteristic dose level for toxicant risk assessment. The no-observed-adverse-effect-level (NOAEL) method has been criticized because it does not use all of the data and because the characteristic dose level obtained depends on the dose levels and the statistical precision (sample sizes) of the study design. Defining the BMD in terms of a confidence bound on a point estimate results in a characteristic dose that also varies with the statistical precision and still depends on the study dose levels.(2) Indiscriminate choice of benchmark response level may result in a BMD that reflects little about the dose-response behavior available from using all of the data. Another concern is that the definition of the BMD for the quantal response case is different for the continuous response case. Specifically, defining the BMD for continuous data using a ratio of increased effect divided by the background response results in an arbitrary dependence on the natural background for the endpoint being studied, making comparison among endpoints less meaningful and standards more arbitrary. We define a modified benchmark dose as a point estimate using the ratio of increased effect divided by the full adverse response range which enables consistent placement of the benchmark response level and provides a BMD with a more consistent relationship to the dose-response curve shape.  相似文献   

20.
Worker populations often provide data on adverse responses associated with exposure to potential hazards. The relationship between hazard exposure levels and adverse response can be modeled and then inverted to estimate the exposure associated with some specified response level. One concern is that this endpoint may be sensitive to the concentration metric and other variables included in the model. Further, it may be that the models yielding different risk endpoints are all providing relatively similar fits. We focus on evaluating the impact of exposure on a continuous response by constructing a model-averaged benchmark concentration from a weighted average of model-specific benchmark concentrations. A method for combining the estimates based on different models is applied to lung function in a cohort of miners exposed to coal dust. In this analysis, we see that a small number of the thousands of models considered survive a filtering criterion for use in averaging. Even after filtering, the models considered yield benchmark concentrations that differ by a factor of 2 to 9 depending on the concentration metric and covariates. The model-average BMC captures this uncertainty, and provides a useful strategy for addressing model uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号