首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The procedure of Verbyla & Cullis (1990) is extended to cater for the analysis of repeated measures data in which either non-linear modelling of the treatment contrasts is required and or there are time dependent covariates. These extensions are illustrated via two agricultural data sets.  相似文献   

2.
This paper examines the effect of randomisation restrictions, either to satisfy conditions for a balanced incomplete block design or to attain a higher level of partial neighbour balance, on the average variance of pair-wise treatment contrasts under a neighbour model discussed by Gleeson & Cullis (1987). Results suggest that smaller average pairwise variances can be obtained by ignoring requirements for incomplete block designs and concentrating on achieving a higher level of partial neighbour balance. Field layout of the design, although often determined by practical constraints, e.g. size, shape of site, minimum plot size and experimental husbandry, may markedly affect average pairwise variance. For the one-dimensional (row-wise) neighbour model considered here, investigation of three different layouts suggests that for a rectangular array of plots, smaller average pairwise variances can generally be obtained from layouts with fewer rows and more plots per row.  相似文献   

3.
In field experiments involving a large number of experimental plots, a neighbour analysis can be used to control environmental variation by estimating the trend within blocks. The effect of interplot competition is another important source of variation which has an influence on the estimation of treatment contrasts. To reduce the effect of the variation from these sources and to improve the precision of comparison between treatments, a spatial model is proposed for incorporating both trend effect and interplot competition. It is a modification to the residual maximum likelihood neighbour analysis of Gleeson & Cullis (1987) using the two neighbouring treatment effects to estimate interplot competition. A real example is used to illustrate this methodology. The results indicate that the extended model gives no appreciable difference in standard error of mean differences compared with the model taking into account the trend effect only. However, the rankings of estimated treatment means do differ. More research using both real and simulated data is required before such models that incorporate trend and competition effects can be confidently recommended.  相似文献   

4.
A balanced sampling design has the interesting property that Horvitz–Thompson estimators of totals for a set of balancing variables are equal to the totals we want to estimate, therefore the variance of Horvitz–Thompson estimators of variables of interest are reduced in function of their correlations with the balancing variables. Since it is hard to derive an analytic expression for the joint inclusion probabilities, we derive a general approximation of variance based on a residual technique. This approximation is useful even in the particular case of unequal probability sampling with fixed sample size. Finally, a set of numerical studies with an original methodology allows to validate this approximation.  相似文献   

5.
We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.  相似文献   

6.
Strategies for controlling plant epidemics are investigated by fitting continuous time spatiotemporal stochastic models to data consisting of maps of disease incidence observed at discrete times. Markov chain Monte Carlo methods are used for fitting two such models to data describing the spread of citrus tristeza virus (CTV) in an orchard. The approach overcomes some of the difficulties encountered when fitting stochastic models to infrequent observations of a continuous process. The results of the analysis cast doubt on the effectiveness of a strategy identified from a previous spatial analysis of the CTV data. Extensions of the approaches to more general models and other problems are also considered.  相似文献   

7.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

8.
Patterson & Thompson (1971) introduced residual maximum likelihood estimation in the case of unbalanced incomplete block designs. Harville (1974) and Cooper & Thompson (1977) give alternative derivations of the likelihood function. The purpose of this note is to provide another derivation of the likelihood function which may be useful in teaching.  相似文献   

9.
Random effects models are considered for count data obtained in a cross or nested classification. The main feature of the proposed models is the use of the additive effects on the original scale in contrast to the commonly used log scale. The rationale behind this approach is given. The estimation of variance components is based on the usual mean square approach. Directly analogous results to those from the analysis of variance models for continuous data are obtained. The usual Poisson dispersion test procedure can be used not only to test for no overall random effects but also to assess the adequacy of the model. Individual variance component can be tested by using the usual F-test. To get a reliable estimate, a large number of factor levels seem to be required.  相似文献   

10.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

11.
A class of sampling two units without replacement with inclusion probability proportional to size is proposed in this article. Many different well known probability proportional to size sampling designs are special cases from this class. The first and second inclusion probabilities of this class satisfy important properties and provide a non-negative variance estimator of the Horvitz and Thompson estimator for the population total. Suitable choice for the first and second inclusion probabilities from this class can be used to reduce the variance estimator of the Horvitz and Thompson estimator. Comparisons between different proportional to size sampling designs through real data and artificial examples are given. Examples show that the minimum variance of the Horvitz and Thompson estimator obtained from the proposed design is not attainable for the most cases at any of the well known designs.  相似文献   

12.
This paper proposes a new robust Bayes factor for comparing two linear models. The factor is based on a pseudo‐model for outliers and is more robust to outliers than the Bayes factor based on the variance‐inflation model for outliers. If an observation is considered an outlier for both models this new robust Bayes factor equals the Bayes factor calculated after removing the outlier. If an observation is considered an outlier for one model but not the other then this new robust Bayes factor equals the Bayes factor calculated without the observation, but a penalty is applied to the model considering the observation as an outlier. For moderate outliers where the variance‐inflation model is suitable, the two Bayes factors are similar. The new Bayes factor uses a single robustness parameter to describe a priori belief in the likelihood of outliers. Real and synthetic data illustrate the properties of the new robust Bayes factor and highlight the inferior properties of Bayes factors based on the variance‐inflation model for outliers.  相似文献   

13.
This paper considers the estimation of the ratio of two scale parameters when the data are censored. It emphasises characteristics of the asymptotic variance under censoring from a practical point of view. The estimator proposed by Padgett & Wei (1982) for the two-sample scale model is extended to the competing risks model. Asymptotic properties of the estimator are studied via its influence function. The use of influence functions permits a unified treatment of both models. Examples show and illustrate that under both models the variance can become infinite under some circumstances.  相似文献   

14.
Abstract.  We discuss two parameterizations of models for marginal independencies for discrete distributions which are representable by bi-directed graph models, under the global Markov property. Such models are useful data analytic tools especially if used in combination with other graphical models. The first parameterization, in the saturated case, is also known as thenation multivariate logistic transformation, the second is a variant that allows, in some (but not all) cases, variation-independent parameters. An algorithm for maximum likelihood fitting is proposed, based on an extension of the Aitchison and Silvey method.  相似文献   

15.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

16.
Data with censored initiating and terminating times arises quite frequently in acquired immunodeficiency syndrome (AIDS) epidemiologic studies. Analysis of such data involves a complicated bivariate likelihood, which is difficult to deal with computationally. Bayesian analysis, op the other hand, presents added complexities that have yet to be resolved. By exploiting the simple form of a complete data likelihood and utilizing the power of a Markov Chain Monte Carlo (MCMC) algorithm, this paper presents a methodology for fitting Bayesian regression models to such data. The proposed methods extend the work of Sinha (1997), who considered non-parametric Bayesian analysis of this type of data. The methodology is illustiated with an application to a cohort of HIV infected hemophiliac patients.  相似文献   

17.
The effectiveness and safety of implantable medical devices is a critical public health concern. We consider analysis of data in which it is of interest to compare devices but some individuals may be implanted with two or more devices. Our motivating example is based on orthopedic devices, where the same individual can be implanted with as many as two devices for the same joint but on different sides of the body, referred to as bilateral cases. Different methods of analysis are considered in a simulation study and real data example, including both marginal and conditional survival models, fitting single and separate models for bilateral and non-bilateral cases, and combining estimates from these two models. The results of simulations suggest that in the context of orthopedic devices, where implants failures are rare, models fit on both bilateral and non-bilateral cases simultaneously could be quite misleading, and that combined estimates from fitting two separate models performed better under homogeneity. A real data example illustrates the issues surrounding analysis of orthopedic device data with bilateral cases. Our findings suggest that research studies of orthopedic devices should at minimum consider fitting separate models to bilateral and non-bilateral cases.  相似文献   

18.
Linear mixed-effects (LME) regression models are a popular approach for analyzing correlated data. Nonparametric extensions of the LME regression model have been proposed, but the heavy computational cost makes these extensions impractical for analyzing large samples. In particular, simultaneous estimation of the variance components and smoothing parameters poses a computational challenge when working with large samples. To overcome this computational burden, we propose a two-stage estimation procedure for fitting nonparametric mixed-effects regression models. Our results reveal that, compared to currently popular approaches, our two-stage approach produces more accurate estimates that can be computed in a fraction of the time.  相似文献   

19.
Since the development of methods for the analysis of experiments with dependent data, see for example Gleeson and Cullis (1987), the design of such experiments has been an area of active research. We investigate the design of factorial experiments, complete and fractional, for various dependency structures. An algorithm for generating optimal or near optimal designs is presented and shown to be useful across a wide range of dependency structures.  相似文献   

20.
A common practice in time series analysis is to fit a centered model to the mean-corrected data set. For stationary autoregressive moving-average (ARMA) processes, as far as the parameter estimation is concerned, fitting an ARMA model without intercepts to the mean-corrected series is asymptotically equivalent to fitting an ARMA model with intercepts to the observed series. We show that, related to the parameter least squares estimation of periodic ARMA models, the second approach can be arbitrarily more efficient than the mean-corrected counterpart. This property is illustrated by means of a periodic first-order autoregressive model. The asymptotic variance of the estimators for both approaches is derived. Moreover, empirical experiments based on simulations investigate the finite sample properties of the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号