首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

2.
Ordinary differential equations (ODEs) are popular tools for modeling complicated dynamic systems in many areas. When multiple replicates of measurements are available for the dynamic process, it is of great interest to estimate mixed-effects in the ODE model for the process. We propose a semiparametric method to estimate mixed-effects ODE models. Rather than using the ODE numeric solution directly, which requires providing initial conditions, this method estimates a spline function to approximate the dynamic process using smoothing splines. A roughness penalty term is defined using the ODEs, which measures the fidelity of the spline function to the ODEs. The smoothing parameter, which controls the trade-off between fitting the data and maintaining fidelity to the ODEs, can be specified by users or selected objectively by generalized cross validation. The spline coefficients, the ODE random effects, and the ODE fixed effects are estimated in three nested levels of optimization. Two simulation studies show that the proposed method obtains good estimates for mixed-effects ODE models. The semiparametric method is demonstrated with an application of a pharmacokinetic model in a study of HIV combination therapy.  相似文献   

3.
Xue H  Miao H  Wu H 《Annals of statistics》2010,38(4):2351-2387
This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge-Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n(-1/(p∧4)), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.  相似文献   

4.
Fang Y  Wu H  Zhu LX 《Statistica Sinica》2011,21(3):1145-1170
We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.  相似文献   

5.
The study of HIV dynamics is one of the most important developments in recent AIDS research. It has led to a new understanding of the pathogenesis of HIV infection. Although important findings in HIV dynamics have been published in prestigious scientific journals, the statistical methods for parameter estimation and model-fitting used in those papers appear surprisingly crude and have not been studied in more detail. For example, the unidentifiable parameters were simply imputed by mean estimates from previous studies, and important pharmacological/clinical factors were not considered in the modelling. In this paper, a viral dynamic model is developed to evaluate the effect of pharmacokinetic variation, drug resistance and adherence on antiviral responses. In the context of this model, we investigate a Bayesian modelling approach under a non-linear mixed-effects (NLME) model framework. In particular, our modelling strategy allows us to estimate time-varying antiviral efficacy of a regimen during the whole course of a treatment period by incorporating the information of drug exposure and drug susceptibility. Both simulated and real clinical data examples are given to illustrate the proposed approach. The Bayesian approach has great potential to be used in many aspects of viral dynamics modelling since it allow us to fit complex dynamic models and identify all the model parameters. Our results suggest that Bayesian approach for estimating parameters in HIV dynamic models is flexible and powerful.  相似文献   

6.
Ordinary differential equations (ODEs) are normally used to model dynamic processes in applied sciences such as biology, engineering, physics, and many other areas. In these models, the parameters are usually unknown, and thus they are often specified artificially or empirically. Alternatively, a feasible method is to estimate the parameters based on observed data. In this study, we propose a Bayesian penalized B-spline approach to estimate the parameters and initial values for ODEs used in epidemiology. We evaluated the efficiency of the proposed method based on simulations using the Markov chain Monte Carlo algorithm for the Kermack–McKendrick model. The proposed approach is also illustrated based on a real application to the transmission dynamics of hepatitis C virus in mainland China.  相似文献   

7.
Gene regulation plays a fundamental role in biological activities. The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. We proposed a comprehensive statistical procedure for ODE model to identify the dynamic GRN. In this article, we applied this model to different segments of time course gene expression data from a simulation experiment and a yeast cell cycle study. We found that the two cell cycle and one cell cycle data provided consistent results, but half cell cycle data produced biased estimation. Therefore, we may conclude that the proposed model can quantify both two cell cycle and one cell cycle gene expression dynamics, but not for half cycle dynamics. The findings suggest that the model can identify the dynamic GRN correctly if the time course gene expression data are sufficient enough to capture the overall dynamics of underlying biological mechanism.  相似文献   

8.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

9.
Abstract

We propose a new class of two-stage parameter estimation methods for semiparametric ordinary differential equation (ODE) models. In the first stage, state variables are estimated using a penalized spline approach; In the second stage, form of numerical discretization algorithms for an ODE solver is used to formulate estimating equations. Estimated state variables from the first stage are used to obtain more data points for the second stage. Asymptotic properties for the proposed estimators are established. Simulation studies show that the method performs well, especially for small sample. Real life use of the method is illustrated using Influenza specific cell-trafficking study.  相似文献   

10.
Quantile regression (QR) models have received increasing attention recently for longitudinal data analysis. When continuous responses appear non-centrality due to outliers and/or heavy-tails, commonly used mean regression models may fail to produce efficient estimators, whereas QR models may perform satisfactorily. In addition, longitudinal outcomes are often measured with non-normality, substantial errors and non-ignorable missing values. When carrying out statistical inference in such data setting, it is important to account for the simultaneous treatment of these data features; otherwise, erroneous or even misleading results may be produced. In the literature, there has been considerable interest in accommodating either one or some of these data features. However, there is relatively little work concerning all of them simultaneously. There is a need to fill up this gap as longitudinal data do often have these characteristics. Inferential procedure can be complicated dramatically when these data features arise in longitudinal response and covariate outcomes. In this article, our objective is to develop QR-based Bayesian semiparametric mixed-effects models to address the simultaneous impact of these multiple data features. The proposed models and method are applied to analyse a longitudinal data set arising from an AIDS clinical study. Simulation studies are conducted to assess the performance of the proposed method under various scenarios.  相似文献   

11.
A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiretroviral (ARV) therapies in AIDS clinical trials. This marker can be used to assess the antiviral potency of therapies, but may be easily affected by clinical factors such as drug exposures and drug resistance as well as baseline characteristics during the long-term treatment evaluation process. HIV dynamic studies have significantly contributed to the understanding of HIV pathogenesis and ARV treatment strategies. Viral dynamic models can be formulated through differential equations, but there has been only limited development of statistical methodologies for estimating such models or assessing their agreement with observed data. This paper develops mechanism-based nonlinear differential equation models for characterizing long-term viral dynamics with ARV therapy. In this model we not only incorporate clinical factors (drug exposures, and susceptibility), but also baseline covariate (baseline viral load, CD4 count, weight, or age) into a function of treatment efficacy. A Bayesian nonlinear mixed-effects modeling approach is investigated with application to an AIDS clinical trial study. The effects of confounding interaction of clinical factors with covariate-based models are compared using the deviance information criteria (DIC), a Bayesian version of the classical deviance for model assessment, designed from complex hierarchical model settings. Relationships between baseline covariate combined with confounding clinical factors and drug efficacy are explored. In addition, we compared models incorporating each of four baseline covariates through DIC and some interesting findings are presented. Our results suggest that modeling HIV dynamics and virologic responses with consideration of time-varying clinical factors as well as baseline characteristics may play an important role in understanding HIV pathogenesis, designing new treatment strategies for long-term care of AIDS patients.  相似文献   

12.
Modelling of HIV dynamics in AIDS research has greatly improved our understanding of the pathogenesis of HIV-1 infection and guided for the treatment of AIDS patients and evaluation of antiretroviral therapies. Some of the model parameters may have practical meanings with prior knowledge available, but others might not have prior knowledge. Incorporating priors can improve the statistical inference. Although there have been extensive Bayesian and frequentist estimation methods for the viral dynamic models, little work has been done on making simultaneous inference about the Bayesian and frequentist parameters. In this article, we propose a hybrid Bayesian inference approach for viral dynamic nonlinear mixed-effects models using the Bayesian frequentist hybrid theory developed in Yuan [Bayesian frequentist hybrid inference, Ann. Statist. 37 (2009), pp. 2458–2501]. Compared with frequentist inference in a real example and two simulation examples, the hybrid Bayesian approach is able to improve the inference accuracy without compromising the computational load.  相似文献   

13.
In clinical practice, the profile of each subject's CD4 response from a longitudinal study may follow a ‘broken stick’ like trajectory, indicating multiple phases of increase and/or decline in response. Such multiple phases (changepoints) may be important indicators to help quantify treatment effect and improve management of patient care. Although it is a common practice to analyze complex AIDS longitudinal data using nonlinear mixed-effects (NLME) or nonparametric mixed-effects (NPME) models in the literature, NLME or NPME models become a challenge to estimate changepoint due to complicated structures of model formulations. In this paper, we propose a changepoint mixed-effects model with random subject-specific parameters, including the changepoint for the analysis of longitudinal CD4 cell counts for HIV infected subjects following highly active antiretroviral treatment. The longitudinal CD4 data in this study may exhibit departures from symmetry, may encounter missing observations due to various reasons, which are likely to be non-ignorable in the sense that missingness may be related to the missing values, and may be censored at the time of the subject going off study-treatment, which is a potentially informative dropout mechanism. Inferential procedures can be complicated dramatically when longitudinal CD4 data with asymmetry (skewness), incompleteness and informative dropout are observed in conjunction with an unknown changepoint. Our objective is to address the simultaneous impact of skewness, missingness and informative censoring by jointly modeling the CD4 response and dropout time processes under a Bayesian framework. The method is illustrated using a real AIDS data set to compare potential models with various scenarios, and some interested results are presented.  相似文献   

14.
Kernel-based profile estimation (KBPE) is proposed for the partially measured ODEs. Compared to the existing approaches the structure information contained in ODEs is used more efficiently in KBPE and no higher order derivatives need to be estimated form the measurements. Construction of confidence interval in finite samples setting for both parameters and state variables are also discussed. Simulation studies show that KBPE can estimate the partially measured ODEs reasonably when the ordinary two-step approach cannot apply. We also illustrate KBPE by a real data set from a clinical HIV study.  相似文献   

15.
In this paper we have developed some state space models for the HIV epidemic for populations at risk for AIDS. By using these state space models, we have developed a general Bayesian procedure for estimating simultaneously the unknown parameters and the state variables. The unknown parameters include the immigration and recruitment rates, the death and retirement rates, the incidence of HIV infection ( and hence the HIV infection distribution ) and the incidence of HIV incubation ( and hence the HIV incubation distribution). The state variables are the numbers of susceptible people (S people), HIV-infected people (I people) and AIDS incidence over time. The basic approach is through multi-level Gibbs sampler combined with the weighted bootstrap method. We have applied the methods to the Swiss AIDS homosexual and IV drug data to estimate simultaneously the unknown parameters and the state variables. Our results show that in both populations, both the HIV infection and HIV incubation have multi-peaks indicating the mixture nature of these distributions. Our results have also shown that the estimates of the death and retirement rates for I people are greater than those of S people, suggesting that the infection by HIV may have increased the death and retirement rates of the individuals.  相似文献   

16.
Intraclass correlation coefficients (ICC) are employed in a wide range of behavioral, biomedical, psychosocial, and health care related research for assessing reliability of continuous outcomes. The linear mixed-effects model (LMM) is the most popular approach for inference about the ICC. However, since LMM is a normal distribution-based model and non-normal data are the norm rather than the exception in most studies, its applications to real study data always beg the question of inference validity. In this paper, we propose a distribution-free alternative to provide robust inference based on the functional response models. We illustrate the performance of the new approach using both real and simulated data.  相似文献   

17.
The case-cohort design is widely used as a means of reducing the cost in large cohort studies, especially when the disease rate is low and covariate measurements may be expensive, and has been discussed by many authors. In this paper, we discuss regression analysis of case-cohort studies that produce interval-censored failure time with dependent censoring, a situation for which there does not seem to exist an established approach. For inference, a sieve inverse probability weighting estimation procedure is developed with the use of Bernstein polynomials to approximate the unknown baseline cumulative hazard functions. The proposed estimators are shown to be consistent and the asymptotic normality of the resulting regression parameter estimators is established. A simulation study is conducted to assess the finite sample properties of the proposed approach and indicates that it works well in practical situations. The proposed method is applied to an HIV/AIDS case-cohort study that motivated this investigation.  相似文献   

18.
S. Huet 《Statistics》2015,49(2):239-266
We propose a procedure to test that the expectation of a Gaussian vector is linear against a nonparametric alternative. We consider the case where the covariance matrix of the observations has a block diagonal structure. This framework encompasses regression models with autocorrelated errors, heteroscedastic regression models, mixed-effects models and growth curves. Our procedure does not depend on any prior information about the alternative. We prove that the test is asymptotically of the nominal level and consistent. We characterize the set of vectors on which the test is powerful and prove the classical √log log (n)/n convergence rate over directional alternatives. We propose a bootstrap version of the test as an alternative to the initial one and provide a simulation study in order to evaluate both procedures for small sample sizes when the purpose is to test goodness of fit in a Gaussian mixed-effects model. Finally, we illustrate the procedures using a real data set.  相似文献   

19.
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomise ODE solvers by adding a random forcing term, we show that a probability measure over the numerical solution of ODEs can be obtained by introducing suitable random time steps in a classical time integrator. This intrinsic randomisation allows for the conservation of geometric properties of the underlying deterministic integrator such as mass conservation, symplecticity or conservation of first integrals. Weak and mean square convergence analysis is derived. We also analyse the convergence of the Monte Carlo estimator for the proposed random time step method and show that the measure obtained with repeated sampling converges in the mean square sense independently of the number of samples. Numerical examples including chaotic Hamiltonian systems, chemical reactions and Bayesian inferential problems illustrate the accuracy, robustness and versatility of our probabilistic numerical method.  相似文献   

20.
Abstract.  In this paper, we propose a random varying-coefficient model for longitudinal data. This model is different from the standard varying-coefficient model in the sense that the time-varying coefficients are assumed to be subject-specific, and can be considered as realizations of stochastic processes. This modelling strategy allows us to employ powerful mixed-effects modelling techniques to efficiently incorporate the within-subject and between-subject variations in the estimators of time-varying coefficients. Thus, the subject-specific feature of longitudinal data is effectively considered in the proposed model. A backfitting algorithm is proposed to estimate the coefficient functions. Simulation studies show that the proposed estimation methods are more efficient in finite-sample performance compared with the standard local least squares method. An application to an AIDS clinical study is presented to illustrate the proposed methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号