首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
Consider a given sequence {Tn} of estimators for a real-valued parameter θ. This paper studies asymptotic properties of restricted Bayes tests of the following form: reject H0:θ ≤ θ0 in favour of the alternative θ > θ0 if TnCn, where the critical point Cn is determined to minimize among all tests of this form the expected probability of error with respect to the prior distribution. Such tests may or may not be fully Bayes tests, and so are called Tn-Bayes. Under fairly broad conditions it is shown that and the Tn-Bayes risk where an is the order of the standard error of Tn, - is the prior density, and μ is the median of F, the limit distribution of (Tn – θ)/anb(θ). Several examples are given.  相似文献   

2.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

3.
Consider the process with, cf. (1.2) on page 265 in B1, X1, …, XN a sample from a distribution F and, for i = 1, …, N, R |x 1 , - q 1 ø| , the rank of |X1 - q1ø| among |X1 - q1ø|, …, |XN - qNø|. It is shown that, under certain regularity conditions on F and on the constants pi and qi, TøN(t) is asymptotically approximately a linear function of ø uniformly in t and in ø for |ø| ≤ C. The special case where the pi and the qi, are independent of i is considered.  相似文献   

4.
For X1, …, XN a random sample from a distribution F, let the process SδN(t) be defined as where K2N = σNi=1(ci ? c?)2 and R xi, + Δd, is the rank of Xi + Δdi, among X1 + Δd1, …, XN + ΔdN. The purpose of this note is to prove that, under certain regularity conditions on F and on the constants ci and di, SΔN (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C. The special case of two samples is considered.  相似文献   

5.
Let {W(s); 8 ≥ 0} be a standard Wiener process, and let βN = (2aN (log (N/aN) + log log N)-1/2, 0 < αNN < ∞, where αN↑ and αN/N is a non-increasing function of N, and define γN(t) = βN[W(nN + taN) ? W(nN)), 0 ≥ t ≥ 1, with nN = NaN. Let K = {x ? C[0,1]: x is absolutely continuous, x(0) = 0 and }. We prove that, with probability one, the sequence of functions {γN(t), t ? [0,1]} is relatively compact in C[0,1] with respect to the sup norm ||·||, and its set of limit points is K. With aN = N, our result reduces to Strassen's well-known theorem. Our method of proof follows Strassen's original, direct approach. The latter, however, contains an oversight which, in turn, renders his proof invalid. Strassen's theorem is true, of course, and his proof can also be rectified. We do this in a somewhat more general context than that of his original theorem. Applications to partial sums of independent identically distributed random variables are also considered.  相似文献   

6.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

7.
In this paper we introduce a class of multivariate distributions, known as the generalized Liouville distribution and defined by the functional form (0 ≤xi < ∞, αi > 0, βi > 0, qi > 0). It is shown that such distributions can be used to derive both the Dirichlet distribution and the beta distribution of the second kind.  相似文献   

8.
Let X and Y be two arbitrary k-dimensional discrete random vectors, for k ≥ 1. We prove that there exists a coupling method which minimizes P( X ≠ Y ). This result is used to find the least upper bound for the metric d( X, Y ) = supA|P( X ∈ A ) ? P( Y ∈ A )| and to derive the inequality d(Σ X i, Σ Y i) ≤ Σd( X i, Y i). We thus obtain a unified method to measure the disparity between the distributions of sums of independent random vectors. Several examples are given.  相似文献   

9.
Two consistent nonexact-confidence-interval estimation methods, both derived from the consistency-equivalence theorem in Plante (1991), are suggested for estimation of problematic parametric functions with no consistent exact solution and for which standard optimal confidence procedures are inadequate or even absurd, i.e., can provide confidence statements with a 95% empty or all-inclusive confidence set. A belt C(·) from a consistent nonexact-belt family, used with two confidence coefficients (γ = infθ Pθ [ θ ? C(X)] and γ+ = supθ Pθ[θ ? C(X)], is shown to provide a consistent nonexact-belt solution for estimating μ21 in the Behrens-Fisher problem. A rule for consistent behaviour enables any confidence belt to be used consistently by providing each sample point with best upper and lower confidence levels [δ+(x) ≥ γ+, δ(x) ≤ γ], which give least-conservative consistent confidence statements ranging from practically exact through informative to noninformative. The rule also provides a consistency correction L(x) = δ+(x)-δ(X) enabling alternative confidence solutions to be compared on grounds of adequacy; this is demonstrated by comparing consistent conservative sample-point-wise solutions with inconsistent standard solutions for estimating μ21 (Creasy-Fieller-Neyman problem) and $\sqrt {\mu _1^2 + \mu _2^2 }$, a distance-estimation problem closely related to Stein's 1959 example  相似文献   

10.
Two classes of estimators of a location parameter ø0 are proposed, based on a nonnegative functional H1* of the pair (D1øN, GøN), where and where FN is the sample distribution function. The estimators of the first class are defined as a value of ø minimizing H1*; the estimators of the second class are linearized versions of those of the first. The asymptotic distribution of the estimators is derived, and it is shown that the Kolmogorov-Smirnov statistic, the signed linear rank statistics, and the Cramérvon Mises statistics are special cases of such functionals H1*;. These estimators are closely related to the estimators of a shift in the two-sample case, proposed and studied by Boulanger in B2 (pp. 271–284).  相似文献   

11.
A contaminated beta model $(1-\gamma) B(1,1) + \gamma B(\alpha,\beta)$ is often used to describe the distribution of $P$ ‐values arising from a microarray experiment. The authors propose and examine a different approach: namely, using a contaminated normal model $(1-\gamma) N(0,\sigma^2) + \gamma N(\mu,\sigma^2)$ to describe the distribution of $Z$ statistics or suitably transformed $T$ statistics. The authors then address whether a researcher who has $Z$ statistics should analyze them using the contaminated normal model or whether the $Z$ statistics should be converted to $P$ ‐values to be analyzed using the contaminated beta model. The authors also provide a decision‐theoretic perspective on the analysis of $Z$ statistics. The Canadian Journal of Statistics 38: 315–332; 2010 © 2010 Statistical Society of Canada  相似文献   

12.
This paper studies the functionals where is a one-dimension sub-fractional Brownian motion with index H∈(0,1). It shows that there exists a constant pH∈(1,2) such that p-variation of the process (j=1,2) is equal to 0 if p>pH, where ?j, j=1,2, are the local time and weighted local time of SH, respectively. This extends the classical results for Brownian motion.  相似文献   

13.
Abstract. The strong Rayleigh property is a new and robust negative dependence property that implies negative association; in fact it implies conditional negative association closed under external fields (CNA+). Suppose that and are two families of 0‐1 random variables that satisfy the strong Rayleigh property and let . We show that {Zi} conditioned on is also strongly Rayleigh; this turns out to be an easy consequence of the results on preservation of stability of polynomials of Borcea & Brändén (Invent. Math., 177, 2009, 521–569). This entails that a number of important π ps sampling algorithms, including Sampford sampling and Pareto sampling, are CNA+. As a consequence, statistics based on such samples automatically satisfy a version of the Central Limit Theorem for triangular arrays.  相似文献   

14.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

15.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

16.
We are interested in estimating prediction error for a classification model built on high dimensional genomic data when the number of genes (p) greatly exceeds the number of subjects (n). We examine a distance argument supporting the conventional 0.632+ bootstrap proposed for the $n > p$ scenario, modify it for the $n < p$ situation and develop learning curves to describe how the true prediction error varies with the number of subjects in the training set. The curves are then applied to define adjusted resampling estimates for the prediction error in order to achieve a balance in terms of bias and variability. The adjusted resampling methods are proposed as counterparts of the 0.632+ bootstrap when $n < p$ , and are found to improve on the 0.632+ bootstrap and other existing methods in the microarray study scenario when the sample size is small and there is some level of differential expression. The Canadian Journal of Statistics 41: 133–150; 2013 © 2012 Statistical Society of Canada  相似文献   

17.
Consider two independent random samples of size f + 1 , one from an N (μ1, σ21) distribution and the other from an N (μ2, σ22) distribution, where σ2122∈ (0, ∞) . The Welch ‘approximate degrees of freedom’ (‘approximate t‐solution’) confidence interval for μ12 is commonly used when it cannot be guaranteed that σ2122= 1 . Kabaila (2005, Comm. Statist. Theory and Methods 34 , 291–302) multiplied the half‐width of this interval by a positive constant so that the resulting interval, denoted by J0, has minimum coverage probability 1 ?α. Now suppose that we have uncertain prior information that σ2122= 1. We consider a broad class of confidence intervals for μ12 with minimum coverage probability 1 ?α. This class includes the interval J0, which we use as the standard against which other members of will be judged. A confidence interval utilizes the prior information substantially better than J0 if (expected length of J)/(expected length of J0) is (a) substantially less than 1 (less than 0.96, say) for σ2122= 1 , and (b) not too much larger than 1 for all other values of σ2122 . For a given f, does there exist a confidence interval that satisfies these conditions? We focus on the question of whether condition (a) can be satisfied. For each given f, we compute a lower bound to the minimum over of (expected length of J)/(expected length of J0) when σ2122= 1 . For 1 ?α= 0.95 , this lower bound is not substantially less than 1. Thus, there does not exist any confidence interval belonging to that utilizes the prior information substantially better than J0.  相似文献   

18.
What is the interpretation of a confidence interval following estimation of a Box-Cox transformation parameter λ? Several authors have argued that confidence intervals for linear model parameters ψ can be constructed as if λ. were known in advance, rather than estimated, provided the estimand is interpreted conditionally given $\hat \lambda$. If the estimand is defined as $\psi \left( {\hat \lambda } \right)$, a function of the estimated transformation, can the nominal confidence level be regarded as a conditional coverage probability given $\hat \lambda$, where the interval is random and the estimand is fixed? Or should it be regarded as an unconditional probability, where both the interval and the estimand are random? This article investigates these questions via large-n approximations, small- σ approximations, and simulations. It is shown that, when model assumptions are satisfied and n is large, the nominal confidence level closely approximates the conditional coverage probability. When n is small, this conditional approximation is still good for regression models with small error variance. The conditional approximation can be poor for regression models with moderate error variance and single-factor ANOVA models with small to moderate error variance. In these situations the nominal confidence level still provides a good approximation for the unconditional coverage probability. This suggests that, while the estimand may be interpreted conditionally, the confidence level should sometimes be interpreted unconditionally.  相似文献   

19.
We study estimation and feature selection problems in mixture‐of‐experts models. An $l_2$ ‐penalized maximum likelihood estimator is proposed as an alternative to the ordinary maximum likelihood estimator. The estimator is particularly advantageous when fitting a mixture‐of‐experts model to data with many correlated features. It is shown that the proposed estimator is root‐$n$ consistent, and simulations show its superior finite sample behaviour compared to that of the maximum likelihood estimator. For feature selection, two extra penalty functions are applied to the $l_2$ ‐penalized log‐likelihood function. The proposed feature selection method is computationally much more efficient than the popular all‐subset selection methods. Theoretically it is shown that the method is consistent in feature selection, and simulations support our theoretical results. A real‐data example is presented to demonstrate the method. The Canadian Journal of Statistics 38: 519–539; 2010 © 2010 Statistical Society of Canada  相似文献   

20.
Abstract. Let M be an isotonic real‐valued function on a compact subset of and let be an unconstrained estimator of M. A feasible monotonizing technique is to take the largest (smallest) monotone function that lies below (above) the estimator or any convex combination of these two envelope estimators. When the process is asymptotically equicontinuous for some sequence rn→∞, we show that these projection‐type estimators are rn‐equivalent in probability to the original unrestricted estimator. Our first motivating application involves a monotone estimator of the conditional distribution function that has the distributional properties of the local linear regression estimator. Applications also include the estimation of econometric (probability‐weighted moment, quantile) and biometric (mean remaining lifetime) functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号