首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Flooding is increasing worldwide, and with climate change, people need help understanding these changing conditions and that their flood risk may also change. This study extends the planned risk information seeking model (PRISM) into the flood risk domain and examines the antecedents that explain flood risk information seeking behavior. Using a survey reflective of the population in the state of Texas (N = 1079), this study includes an operationalization of risk perception specific to the complexity of floods and explores two key moderators in the PRISM model. Findings suggest that using PRISM to elaborate flood risk information seeking behaviors explains 48% of the variance in information seeking intent and 37% of the variance in affective risk perception. Using multigroup modeling, the findings also reveal that simply living in an area at high risk for floods does not significantly impact any relationships in the model. However, having experience with flooding increases the strength of risk perception paths—in particular, perceived probability of flood risk—and better explains flood risk information seeking. Suggestions for how to use communication to influence risk perceptions and information seeking, as well as future directions for research, are also discussed.  相似文献   

2.
Flood risk is a function of both climate and human behavior, including individual and societal actions. For this reason, there is a need to incorporate both human and climatic components in models of flood risk. This study simulates behavioral influences on the evolution of community flood risk under different future climate scenarios using an agent-based model (ABM). The objective is to understand better the ways, sometimes unexpected, that human behavior, stochastic floods, and community interventions interact to influence the evolution of flood risk. One historic climate scenario and three future climate scenarios are simulated using a case study location in Fargo, North Dakota. Individual agents can mitigate flood risk via household mitigation or by moving, based on decision rules that consider risk perception and coping perception. The community can mitigate or disseminate information to reduce flood risk. Results show that agent behavior and community action have a significant impact on the evolution of flood risk under different climate scenarios. In all scenarios, individual and community action generally result in a decline in damages over time. In a lower flood risk scenario, the decline is primarily due to agent mitigation, while in a high flood risk scenario, community mitigation and agent relocation are primary drivers of the decline. Adaptive behaviors offset some of the increase in flood risk associated with climate change, and under an extreme climate scenario, our model indicates that many agents relocate.  相似文献   

3.
Flooding is a major natural disaster that has brought tremendous losses to mankind throughout the ages. Even so, floods can be controlled by appropriate measures to minimize loss and damage. Flood risk assessment is an essential analytic step in preventing floods and reducing losses. Identifying previous flood risk and predicting future features are conducive to understanding the changing patterns and laws of flood risk. Taking the Dongjiang River basin as a study case, we assessed and regionalized flood risk in 1990, 2000, and 2010 from the past perspective and explored dynamic expansion during 1990–2010. Then, we projected land-use type, population, and gross domestic product in 2030 and 2050 and finally assessed and regionalized the risk from a future perspective. Results show that areas with very high risk accounted for 14.98–18.08% during 1990–2010; approximately 13.90% areas of the basin transformed from lower-level risk to higher-level risk whereas 9.07% fell from a higher level to a lower level during the period. For the future scenario, areas with very high and high risk in 2030 and 2050 are expected to account for 21.55% and 24.84%, respectively. Generally, our study can better identify changes in flood risk at a spatial scale and reveal the dynamic evolution rule, which provides a synthetical means of flood prevention and reduction, flood insurance, urban planning, and water resource management in the future under global climate change, especially for developing or high-speed urbanization regions.  相似文献   

4.
Climate change may well lead to an increased risk of river floods in the Netherlands. However, the impacts of changes in water management on river floods are larger, either enhancing or reducing flood risks. Therefore, the abilities of water-management authorities to learn that climate and river flows are changing, and to recognize and act upon the implications, are of crucial importance. At the same time, water-management authorities respond to other trends, such as the democratization of decision making, which alter their ability to react to climate change. These complex interactions are illustrated with changes in river flood risk management for the Rhine and the Meuse in the Netherlands over the last 50 years. A scenario study is used to seek insight into the question of whether current water-management institutions and their likely successors are capable of dealing with plausible future flood risks. The scenarios show that new and major infrastructure is needed to keep flood risks at their current level. Such a structural solution to future flood risks is feasible, but requires considerable political will and institutional reform, both for planning and implementation. It is unlikely that reform will be fast enough or the will strong enough.  相似文献   

5.
Risk Analysis and Management of Dam Safety   总被引:4,自引:0,他引:4  
The current safety criteria for a high hazard dam focus on protecting the dam during a large flood. While protecting the dam does help to protect downstream people and property, the two objectives are not the same. Instead, the criteria should focus on lowering property damage (including damage to the dam) and preventing flood deaths. High hazard dams must survive a design flood in the current safety criteria. However, experts don't agree on the size of the peak flow that meets this criteria. Statistical hydrologists have proposed an alternative to using professional judgment to specify the design flood. Unfortunately, peak flow distributions cannot be estimated with confidence for extreme floods given available data. A major safety goal is to prevent deaths from floods. Preventing deaths is a major reason for constructing the spillway to handle extreme floods so that the dam doesn't fail due to overtopping. However, even if the dam doesn't fail, the spilled floods could cause many deaths. A better approach is to warn people to get them out of harm's way if a flood is coming. Retrofitting existing dams that could pass a “probable maximum flood” (PMF) when built is almost never a good use of funds. Instead, funds would be spent better by focusing on preventing damage from small floods, lowering the damage from medium-sized floods, and warning people in the event of a flood that could pose risks to life.  相似文献   

6.
《Risk analysis》2018,38(6):1258-1278
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent‐based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near‐miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high‐risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in‐depth behavioral and decision rules at the individual and community level.  相似文献   

7.
Flash Flood Awareness in Southwest Virginia   总被引:1,自引:0,他引:1  
Flash floods are one of the most dangerous weather-related natural disasters in the world. These events develop less than six hours after a rainfall event and create hazardous situations for people and extensive damage to property. It is critical for flash flood conditions to be warned of in a timely manner to minimize impacts. There is currently a knowledge gap between flood experts and the general public about the level of perceived risk that the latter has toward the powerful flood waters and how events should be warned of, which affects the communication capabilities and efficiency of the warning process. Prior research has addressed risk perception of natural disasters, but there is little emphasis on flash floods within flood-prone regions of the United States. This research utilizes an online survey of 300 respondents to determine the current state of flash flood awareness and preparation in southwest Virginia. Analysis of trends involved the use of chi-squared tests (chi2) and simple frequency and percentage calculations. Results reveal that a knowledge base of flash floods does exist, but is not advanced enough for proper awareness. Young adults have a lower understanding and are not as concerned about flood impacts. Increased exposure and perceived risk play a key role in shaping the way a person approaches flash floods. People do monitor flood events, but they are unaware of essential guidance and communication mechanisms. Finally, results suggest that the current method of warning about flash floods is not provided at an appropriate level of detail for effective communication.  相似文献   

8.
Delta areas such as the Netherlands are more and more at risk of future flooding due to global climate change. Motivating residents living in flood-prone areas to effectively cope with local floods may lead to minimization of material losses and loss of life. The aim of this research was to investigate whether the extent to which residents had been exposed to flooding in the past was a key factor in motivating residents to effectively cope with future flooding. We also focused on the psychological variables that mediated this relationship. We conducted a survey (N = 516) among flood victims and nonvictims. We assessed subjective experiences due to past flooding, affective and cognitive appraisals, and coping responses. Results show that victims reported stronger emotions (negative and positive), and the receipt of more social support due to past flooding than did nonvictims. Moreover, victims worry more about future flooding, perceive themselves as more vulnerable to future flooding, perceive the consequences of future flooding as more severe, and have stronger intentions to take adaptive actions in the future than nonvictims. Structural equation modeling reveals that the latter effect was fully mediated by specific experiences and appraisals. Insights into factors and processes that have the potential to motivate residents to effectively cope with future floods may prove helpful in developing interventions to inform residents how to act effectively in case of an imminent flood.  相似文献   

9.
An understudied, but central aspect in understanding flood impacts is the way we conceptualize, identify, and delineate risk. The 100‐year floodplain is the longstanding metric in the United States for determining and acting upon the possibility of an area being inundated. This spatial delineation guides local planning and development decisions, triggers insurance purchases and other household adjustments, and serves as the fundamental indicator for whether it is safe to build a structure on a particular site. However, increasing evidence suggests that the 100‐year floodplain is neither accurate nor sufficient in guiding communities and household decisions to mitigate the adverse economic impacts of floods. In this perspective, we examine the effectiveness of the 100‐year floodplain as an appropriate marker of risk. First, we review existing studies on location and flood damage. Next, we apply these concepts to repetitive flood losses data in Harris County, Texas. We conclude that the apparent inability of the floodplain designation to effectively capture the likelihood of property damage and potential loss of human life in coastal areas has left potentially millions of property owners unaware of the flood risk and unprepared to mitigate their adverse impacts. Relying on traditional 100‐year floodplain boundaries, local decision makers are hampered in their ability to ensure community development occurs in a resilient manner. Finally, we set forth an agenda for future research to better capture the conditions associated with flood risk and account for the large percentage of damage outside the designated floodplain.  相似文献   

10.
Hydrometeorological phenomena have increased in intensity and frequency in last decades, with Europe as one of the most affected areas. This accounts for considerable economic losses in the region. Regional adaptation strategies for costs minimization require a comprehensive assessment of the disasters’ economic impacts at a multiple-region scale. This article adapts the flood footprint method for multiple-region assessment of total economic impact and applies it to the 2009 Central European Floods event. The flood footprint is an impact accounting framework based on the input–output methodology to economically assess the physical damage (direct) and production shortfalls (indirect) within a region and wider economic networks, caused by a climate disaster. Here, the model is extended through the capital matrix, to enable diverse recovery strategies. According to the results, indirect losses represent a considerable proportion of the total costs of a natural disaster, and most of them occur in nonhighly directly impacted industries. For the 2009 Central European Floods, the indirect losses represent 65% out of total, and 70% of it comes from four industries: business services, manufacture general, construction, and commerce. Additionally, results show that more industrialized economies would suffer more indirect losses than less-industrialized ones, in spite of being less vulnerable to direct shocks. This may link to their specific economic structures of high capital-intensity and strong interindustrial linkages.  相似文献   

11.
As climate change impacts result in more extreme events (such as droughts and floods), the need to understand which policies facilitate effective climate change adaptation becomes crucial. Hence, this article answers the question: How do governments and policymakers frame policy in relation to climate change, droughts, and floods and what governance structures facilitate adaptation? This research interrogates and analyzes through content analysis, supplemented by semi‐structured qualitative interviews, the policy response to climate change, drought, and flood in relation to agricultural producers in four case studies in river basins in Chile, Argentina, and Canada. First, an epistemological explanation of risk and uncertainty underscores a brief literature review of adaptive governance, followed by policy framing in relation to risk and uncertainty, and an analytical model is developed. Pertinent findings of the four cases are recounted, followed by a comparative analysis. In conclusion, recommendations are made to improve policies and expand adaptive governance to better account for uncertainty and risk. This article is innovative in that it proposes an expanded model of adaptive governance in relation to “risk” that can help bridge the barrier of uncertainty in science and policy.  相似文献   

12.
Climate change is projected to cause severe economic losses, which has the potential to affect the insurance sector and public compensation schemes considerably. This article discusses the role insurance can play in adapting to climate change impacts. The particular focus is on the Dutch insurance sector, in view of the Netherlands being extremely vulnerable to climate change impacts. The usefulness of private insurance as an adaptation instrument to increased flood risks is examined, which is currently unavailable in the Netherlands. It is questioned whether the currently dominant role of the Dutch government in providing damage relief is justified from an economic efficiency perspective. Characteristics of flood insurance arrangements in the Netherlands, the United Kingdom, Germany, and France are compared in order to identify possible future directions for arrangements in the Netherlands. It is argued that social welfare improves when insurance companies take responsibility for part of the risks associated with climate change.  相似文献   

13.
In this article, we propose an integrated direct and indirect flood risk model for small‐ and large‐scale flood events, allowing for dynamic modeling of total economic losses from a flood event to a full economic recovery. A novel approach is taken that translates direct losses of both capital and labor into production losses using the Cobb‐Douglas production function, aiming at improved consistency in loss accounting. The recovery of the economy is modeled using a hybrid input‐output model and applied to the port region of Rotterdam, using six different flood events (1/10 up to 1/10,000). This procedure allows gaining a better insight regarding the consequences of both high‐ and low‐probability floods. The results show that in terms of expected annual damage, direct losses remain more substantial relative to the indirect losses (approximately 50% larger), but for low‐probability events the indirect losses outweigh the direct losses. Furthermore, we explored parameter uncertainty using a global sensitivity analysis, and varied critical assumptions in the modeling framework related to, among others, flood duration and labor recovery, using a scenario approach. Our findings have two important implications for disaster modelers and practitioners. First, high‐probability events are qualitatively different from low‐probability events in terms of the scale of damages and full recovery period. Second, there are substantial differences in parameter influence between high‐probability and low‐probability flood modeling. These findings suggest that a detailed approach is required when assessing the flood risk for a specific region.  相似文献   

14.
《Risk analysis》2018,38(6):1169-1182
Flooding in urban areas during heavy rainfall, often characterized by short duration and high‐intensity events, is known as “surface water flooding.” Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively.  相似文献   

15.
The Impact of Climate Variability on Flood Risk in Poland   总被引:2,自引:0,他引:2  
This article examines the role of climatic and hydrological variability in assessing the cumulative risk of flood events in Poland over a T-year period. In a broad sense flood-risk estimation combines a frequency analysis of extreme hydrological phenomena with an evaluation of flood-induced damages. The damage from floods depends on the critical values of the river discharges. The probabilistic flood analysis usually includes an estimation of the expected annual probability of the critical discharge Qcr being exceeded and the equivalent long-term risk of it being exceeded over the next T years. If, however, the process is nonstationary, the T-year risk of flood damage may depend importantly on the variation of hydrological processes. As a possible explanation for the variations observed in snowmelt-induced floods in Polish rivers, this article investigates the possible impact of the North Atlantic Oscillation (NAO) on surface air temperature T and precipitation P. The spatial distribution of the correlation coefficients between NAO and T, as well as NAO and P, show very significant differences in the NAO impact on meteorological variables in various parts of Europe. To assess the implications of NAO variations on spring flood discharges, a simple model of Snow Cover Water Equivalent (SCWE) was applied to selected Polish river catchments. The conclusion of this analysis is that the yearly maximum of SCWE values significantly decreases with increasing NAO. This leads to a temporal redistribution of winter and spring runoff. The question of spring flood characteristics being stationary or nonstationary may therefore be linked with stochastic properties of the NAO index time series.  相似文献   

16.
Floods and Climate Change: Interactions and Impacts   总被引:3,自引:0,他引:3  
Whether the floods experienced during the last decade in Germany and in other European countries are triggered or worsened by human activities has been the subject of a great deal of debate. Possible anthropogenic activities leading to increased flood risk include river regulation measures, intensified land use and forestry, and emissions of greenhouse gases causing a change in the global climate. This article discusses the latter by reviewing the existing knowledge on the subject. First, the relevance, capabilities, and limitations of climate models for the simulation and analysis of flood risk under aspects of the anthropogenic climate change are described. Special consideration is given here to differences between the "typical" spatial scale of climate models and hydrological flood models. Second, observations of trends in climate variables relevant for river flooding issues are summarized. Special emphasis is put on the Rhine and other German catchment areas. Third, the possibilities of modeling the different parts of the "cascade of flood risk" are summarized, introducing the special features of meteorological, hydrological, and river hydraulic models.  相似文献   

17.
Qing Miao 《Risk analysis》2019,39(6):1298-1313
There has been a growing interest in understanding whether and how people adapt to extreme weather events in a changing climate. This article presents one of the first empirical analyses of adaptation to flooding on a global scale. Using a sample of 97 countries between 1985 and 2010, we investigate the extent and pattern of flood adaptation by estimating the effects of a country's climatological risk, recent flood experiences, and socioeconomic characteristics on its flood‐related fatalities. Our results provide mixed evidence on adaptation: countries facing greater long‐term climatological flooding risks do not necessarily adapt better and suffer fewer fatalities; however, after controlling for the cross‐country heterogeneity, we find that more recent flooding shocks have a significant and negative effect on fatalities from subsequent floods. These findings may suggest the short‐term learning dynamics of adaptation and potential inefficacy of earlier flood control measures, particularly those that promote increased exposure in floodplains. Our findings provide important implications for climate adaptation policy making and climate modeling.  相似文献   

18.
Climate Change and Human Health: Estimating Avoidable Deaths and Disease   总被引:2,自引:0,他引:2  
Human population health has always been central in the justification for sustainable development but nearly invisible in the United Nations Framework Convention on Climate Change negotiations. Current scientific evidence indicates that climate change will contribute to the global burden of disease through increases in diarrhoeal disease, vector-borne disease, and malnutrition, and the health impacts of extreme weather and climate events. A few studies have estimated future potential health impacts of climate change but often generate little policy-relevant information. Robust estimates of future health impacts rely on robust projections of future disease patterns. The application of a standardized and established methodology has been developed to quantify the impact of climate change in relation to different greenhouse gas emission scenarios. All health risk assessments are necessarily biased toward conservative best-estimates of health effects that are easily measured. Global, regional, and national risk assessments can take no account of irreversibility, or plausible low-probability events with potentially very high burdens on human health. There is no "safe limit" of climate change with respect to health impacts as health systems in some regions do not adequately cope with the current climate variability. Current scientific methods cannot identify global threshold health effects in order for policymakers to regulate a "tolerable" amount of climate change. We argue for the need for more research to reduce the potential impacts of climate change on human health, including the development of improved methods for quantitative risk assessment. The large uncertainty about the future effects of climate change on human population health should be a reason to reduce greenhouse gas emissions, and not a reason for inaction.  相似文献   

19.
Managing the Risk of Global Climate Catastrophe: An Uncertainty Analysis   总被引:2,自引:0,他引:2  
Despite much scientific progress over many decades, the nature of global climate change remains highly uncertain, and the possibility of global climate catastrophe is one of the main concerns in public debates about global climate change. In this paper, we present a model which incorporates the risk of climate catastrophe in an analysis of greenhouse gas abatement strategy. In this model, the timing and severity of climate catastrophe are treated probabilistically. The impacts of key uncertainties on optimal policy are analyzed, and the expected values of additional information that reduces the uncertainty associated with the world economy, carbon cycle, climate change, and climate damage are estimated.  相似文献   

20.
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net‐water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics‐based entropy method. The weighted indices were input into the WNB‐based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image‐based sampling and validation, cell‐by‐cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood‐related environmental hazard studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号