首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current article describes the economic evaluation of interventions to control Campylobacter on chicken meat by means of a cost-utility analysis. Apart from the methodology used, the main focus of this article is on data gaps and assumptions made, and their impact on results and conclusions. The direct intervention costs, the relative risk, the disease burden (expressed in disability-adjusted life years (DALYs)), and the costs of illness for the various interventions are necessary inputs for the cost-utility analysis. The cost-utility ratio (CUR) -- the measure for efficiency -- is expressed in net costs per avoided DALY. Most data gaps were of a biological order, but for some interventions, information on costs was also scarce. As a consequence, assumptions had to be made, which had some impact on the estimated CUR. A higher (lower) incidence of Campylobacter infections associated with chicken meat, higher (lower) effectiveness, and lower (higher) intervention costs, respectively, would result in absolute better (worse) CUR estimates. By taking the perspective of all consumers eating Dutch chicken meat, rather than only the Dutch society, absolute better CUR estimates could be obtained. Indirect costs or a shift toward non-Dutch chicken meat would both result in higher CUR estimates. Despite the assumptions made, three interventions showed for most of the applied sensitivity analyses relatively favorable CUR estimates: limiting fecal leakage during processing, carcass decontamination by dipping in a chemical solution, and the phage therapy. However, all three do have some clauses.  相似文献   

2.
A quantitative microbiological risk assessment model describes the transmission of Campylobacter through the broiler meat production chain and at home, from entering the processing plant until consumption of a chicken breast fillet meal. The exposure model is linked to a dose-response model to allow estimation of the incidence of human campylobacteriosis. The ultimate objective of the model is to serve as a tool to assess the effects of interventions to reduce campylobacteriosis in the Netherlands. The model describes some basic mechanistics of processing, including the nonlinear effects of cross-contamination between carcasses and their leaking feces. Model input is based on the output of an accompanying farm model and Dutch count data of Campylobacters on the birds' exterior and in the feces. When processing data are lacking, expert judgment is used for model parameter estimation. The model shows that to accurately assess of the effects of interventions, numbers of Campylobacter have to be explicitly incorporated in the model in addition to the prevalence of contamination. Also, as count data usually vary by several orders of magnitude, variability in numbers within and especially between flocks has to be accounted for. Flocks with high concentrations of Campylobacter in the feces that leak from the carcasses during industrial processing seem to have a dominant impact on the human incidence. The uncertainty in the final risk estimate is large, due to a large uncertainty at several stages of the chain. Among others, more quantitative count data at several stages of the production chain are needed to decrease this uncertainty. However, this uncertainty is smaller when relative risks of interventions are calculated with the model. Hence, the model can be effectively used by risk management in deciding on strategies to reduce human campylobacteriosis.  相似文献   

3.
As part of a comprehensive risk assessment on the Campylobacter prevalence in the chicken production chain (from young born chicken till chicken fillet) in the Netherlands, we formulated a quantitative model on the transmission dynamics of Campylobacter at Dutch broiler farms. This model is used to quantify the risk of Campylobacter prevalence in broilers at the time that flocks leave the farm for processing. To this end, we assumed that the Campylobacter prevalence is primarily determined by two parameters, that is, the within- and between-flock transmission. The within-flock transmission was assessed fitting experimental data to a logistic growth model and the between-flock transmission was assessed fitting field data to a generalized linear model (GLM), which included three possible infection routes: (1) via an infected flock in the previous cycle, (2) via other infected flocks present on the farm, and (3) from other sources. This model was applied to assess the efficacy of three control scenarios; (1) a ban on other livestock on broiler farms, (2) a ban on thinning, and (3) a reduction of the between-flock transmission. In contrast to the other scenarios, the third one was shown to be most effective. Theoretically, this is accomplished by improved biosecurity. However, the impact of improved biosecurity cannot be specified into specific control measures, and therefore it is not clear what investments are needed. Finally, we also assessed the efficacy of scheduled treatment, that is, fresh meat production solely from test-negative flocks. We found that the reliability of negative test results, which is crucial, strongly depends on the length of time between testing and slaughter. The sensitivity and specificity of the test appeared to be of minor importance.  相似文献   

4.
The inclusion of deep tissue lymph nodes (DTLNs) or nonvisceral lymph nodes contaminated with Salmonella in wholesale fresh ground pork (WFGP) production may pose risks to public health. To assess the relative contribution of DTLNs to human salmonellosis occurrence associated with ground pork consumption and to investigate potential critical control points in the slaughter‐to‐table continuum for the control of human salmonellosis in the United States, a quantitative microbial risk assessment (QMRA) model was established. The model predicted an average of 45 cases of salmonellosis (95% CI = [19, 71]) per 100,000 Americans annually due to WFGP consumption. Sensitivity analysis of all stochastic input variables showed that cooking temperature was the most influential parameter for reducing salmonellosis cases associated with WFGP meals, followed by storage temperature and Salmonella concentration on contaminated carcass surface before fabrication. The input variables were grouped to represent three main factors along the slaughter‐to‐table chain influencing Salmonella doses ingested via WFGP meals: DTLN‐related factors, factors at processing other than DTLNs, and consumer‐related factors. The evaluation of the impact of each group of factors by second‐order Monte Carlo simulation showed that DTLN‐related factors had the lowest impact on the risk estimate among the three groups of factors. These findings indicate that interventions to reduce Salmonella contamination in DTLNs or to remove DTLNs from WFGP products may be less critical for reducing human infections attributable to ground pork than improving consumers’ cooking habits or interventions of carcass decontamination at processing.  相似文献   

5.
The improvement of food safety in the domestic environment requires a transdisciplinary approach, involving interaction between both the social and natural sciences. This approach is applied in a study on risks associated with Campylobacter on broiler meat. First, some web-based information interventions were designed and tested on participant motivation and intentions to cook more safely. Based on these self-reported measures, the intervention supported by the emotion "disgust" was selected as the most promising information intervention. Its effect on microbial cross-contamination was tested by recruiting a set of participants who prepared a salad with chicken breast fillet carrying a known amount of tracer bacteria. The amount of tracer that could be recovered from the salad revealed the transfer and survival of Campylobacter and was used as a measure of hygiene. This was introduced into an existing risk model on Campylobacter in the Netherlands to assess the effect of the information intervention both at the level of exposure and the level of human disease risk. We showed that the information intervention supported by the emotion "disgust" alone had no measurable effect on the health risk. However, when a behavioral cue was embedded within the instruction for the salad preparation, the risk decreased sharply. It is shown that a transdisciplinary approach, involving research on risk perception, microbiology, and risk assessment, is successful in evaluating the efficacy of an information intervention in terms of human health risks. The approach offers a novel tool for science-based risk management in the area of food safety.  相似文献   

6.
Annual data from the Finnish National Salmonella Control Programme were used to build up a probabilistic transmission model of salmonella in the primary broiler production chain. The data set consisted of information on grandparent, parent, and broiler flock populations. A probabilistic model was developed to describe the unknown true prevalences, vertical and horizontal transmissions, as well as the dynamical model of infections. By combining these with the observed data, the posterior probability distributions of the unknown parameters and variables could be derived. Predictive distributions were derived for the true number of infected broiler flocks under the adopted intervention scheme and these were compared with the predictions under no intervention. With the model, the effect of the intervention used in the programme, i.e., eliminating salmonella positive breeding flocks, could be quantitatively assessed. The 95% probability interval of the posterior predictive distribution for (broiler) flock prevalence under current (1999) situation was [1.3%-17.4%] (no intervention), and [0.9%-5.8%] (with intervention). In the scenario of one infected grandparent flock, these were [2.8%-43.1%] and [1.0%-5.9%], respectively. Computations were performed using WinBUGS and Matlab softwares.  相似文献   

7.
Soil contaminated with heavy metals is a salient example of environmental risk. Consumption of vegetables cultivated in contaminated soil or direct ingestion of soil by small children can damage health. In contrast to other kinds of pollution or risks such as air pollution or exposure to ozone, the individual risk concerning soil contamination is highly dependent on the way one is exposed to the local source of risk. Thus, we wanted to know if risk perception varies according to the level of exposure. A quasi-experimental, questionnaire-based study was conducted in a community in northwest Switzerland, where the soil is widely contaminated. The level of contamination varies with the distance from the source of the contamination, a metal processing plant. We investigated the perception of risk of heavy-metal-contaminated soil by inhabitants with high-exposure levels (N= 27) and those with low-exposure levels (N= 30). Both groups judged the risk for oneself similarly whereas the low-exposure group, when compared to the high-exposure group, judged perceived risk for other affected people living in their community to be higher. Besides this exposure effect, risk perception was mainly determined by emotional concerns. Participants with higher scores in self-estimated knowledge tended to provide low-risk judgments, were less interested in further information, showed low emotional concern, and thus displayed high risk acceptance. In contrast, actual knowledge showed no correlation with any of theses variables. Judgments on the need for decontamination are determined by risk perception, less application of dissonance-reducing heuristics and commitment to sustainability. The desire for additional information is not affected by missing knowledge but is affected by emotional concerns.  相似文献   

8.
This paper explores the food safety implications of insurance products that compensate for business losses when food contamination causes a processing firm to initiate a recall. Discoveries of meat and poultry product contamination, in particular life-threatening pathogens, are increasing. The financial losses that follow a recall can be substantial as illustrated by several recent U.S. cases—Hudson Foods, Bil Mar, and Thorn Apple Valley Inc. Additionally, contaminated food product that escapes the current recall system poses a threat to consumer safety. The conceptual analysis presented here suggests that insurance underwriters could motivate earlier recalls and more diligent implementation of Hazard Analysis and Critical Control Point (HACCP). With sound underwriting, these changes could ultimately reduce the incidence of illness and death from foodborne pathogens.  相似文献   

9.
The significance of petting zoos for transmission of Campylobacter to humans and the effect of interventions were estimated. A stochastic QMRA model simulating a child or adult visiting a Dutch petting zoo was built. The model describes the transmission of Campylobacter in animal feces from the various animal species, fences, and the playground to ingestion by visitors through touching these so‐called carriers and subsequently touching their lips. Extensive field and laboratory research was done to fulfill data needs. Fecal contamination on all carriers was measured by swabbing in 10 petting zoos, using Escherichia coli as an indicator. Carrier‐hand and hand‐lip touching frequencies were estimated by, in total, 13 days of observations of visitors by two observers at two petting zoos. The transmission from carrier to hand and from hand to lip by touching was measured using preapplied cow feces to which E. coli WG5 was added as an indicator. Via a Beta‐Poisson dose‐response function, the number of Campylobacter cases for the whole of the Netherlands (16 million population) in a year was estimated at 187 and 52 for children and adults, respectively, so 239 in total. This is significantly lower than previous QMRA results on chicken fillet and drinking water consumption. Scenarios of 90% reduction of the contamination (meant to mimic cleaning) of all fences and just goat fences reduces the number of cases by 82% and 75%, respectively. The model can easily be adapted for other fecally transmitted pathogens.  相似文献   

10.
This article presents an analysis of postattack response strategies to mitigate the risks of reoccupying contaminated areas following a release of Bacillus anthracis spores (the bacterium responsible for causing anthrax) in an urban setting. The analysis is based on a hypothetical attack scenario in which individuals are exposed to B. anthracis spores during an initial aerosol release and then placed on prophylactic antibiotics that successfully protect them against the initial aerosol exposure. The risk from reoccupying buildings contaminated with spores due to their reaerosolization and inhalation is then evaluated. The response options considered include: decontamination of the buildings, vaccination of individuals reoccupying the buildings, extended evacuation of individuals from the contaminated buildings, and combinations of these options. The study uses a decision tree to estimate the costs and benefits of alternative response strategies across a range of exposure risks. Results for best estimates of model inputs suggest that the most cost‐effective response for high‐risk scenarios (individual chance of infection exceeding 11%) consists of evacuation and building decontamination. For infection risks between 4% and 11%, the preferred option is to evacuate for a short period, vaccinate, and then reoccupy once the vaccine has taken effect. For risks between 0.003% and 4%, the preferred option is to vaccinate only. For risks below 0.003%, none of the mitigation actions have positive expected monetary benefits. A sensitivity analysis indicates that for high‐infection‐likelihood scenarios, vaccination is recommended in the case where decontamination efficacy is less than 99.99%.  相似文献   

11.
This article presents a mathematical model for the Enterobacteriaceae count on the surface of broiler chicken during slaughter and how it may be affected by different processing technologies. The model is based on a model originally developed for Campylobacter and has been adapted for Enterobacteriaceae using a Bayesian updating approach and hitherto unpublished data gathered from German abattoirs. The slaughter process in the model consists of five stages: input, scalding, defeathering, evisceration, washing, and chilling. The impact of various processing technologies along the broiler processing line on the Enterobacteriaceae count on the carcasses’ surface has been determined from literature data. The model is implemented in the software R and equipped with a graphical user interface which allows interactively to choose among different processing technologies for each stage along the processing line. Based on the choice of processing technologies the model estimates the Enterobacteriaceae count on the surface of each broiler chicken at each stage of processing. This result is then compared to a so-called baseline model which simulates a processing line with a fixed set of processing technologies. The model calculations showed how even very effective removal of bacteria on the exterior of the carcass in a previous step will be undone by the cross-contamination with leaked feces, if feces contain high concentrations of bacteria.  相似文献   

12.
When a buyer needs to purchase commercial or industrial property, the decision of what real estate to purchase should be based on an assessment of the total costs of acquisition. In addition to the direct purchase cost, other possible costs include hazardous waste site assessment studies and clean up costs if the purchased site proves to be contaminated. This paper presents a decision analysis model for determining when and which type of hazardous waste assessment tests should be conducted and how the test output affects the choice of site. The model assumes there are two types of hazardous waste assessment, an historical use review (phase 1 test)and soil and water sampling (phase 2 test). Model inputs include the cost, sensitivity and specificity for each type of test, a site's purchase price, and a priori probability of contamination, along with the clean-up cost for a contaminated site. The analysis uses the results of a data survey of 17 environmental engineering firms in setting values on the model input requirements. The paper also reports on sensitivity analysis with the model for the purpose of providing decision-makers with explicit protocols for test utilization.  相似文献   

13.
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens's data are used to demonstrate performance of this method in updating parameters of the chicken processing line model.  相似文献   

14.
《Risk analysis》2018,38(5):1070-1084
Human exposure to bacteria resistant to antimicrobials and transfer of related genes is a complex issue and occurs, among other pathways, via meat consumption. In a context of limited resources, the prioritization of risk management activities is essential. Since the antimicrobial resistance (AMR) situation differs substantially between countries, prioritization should be country specific. The objective of this study was to develop a systematic and transparent framework to rank combinations of bacteria species resistant to selected antimicrobial classes found in meat, based on the risk they represent for public health in Switzerland. A risk assessment model from slaughter to consumption was developed following the Codex Alimentarius guidelines for risk analysis of foodborne AMR. Using data from the Swiss AMR monitoring program, 208 combinations of animal species/bacteria/antimicrobial classes were identified as relevant hazards. Exposure assessment and hazard characterization scores were developed and combined using multicriteria decision analysis. The effect of changing weights of scores was explored with sensitivity analysis. Attributing equal weights to each score, poultry‐associated combinations represented the highest risk. In particular, contamination with extended‐spectrum β‐lactamase/plasmidic AmpC‐producing Escherichia coli in poultry meat ranked high for both exposure and hazard characterization. Tetracycline‐ or macrolide‐resistant Enterococcus spp., as well as fluoroquinolone‐ or macrolide‐resistant Campylobacter jejuni , ranked among combinations with the highest risk. This study provides a basis for prioritizing future activities to mitigate the risk associated with foodborne AMR in Switzerland. A user‐friendly version of the model was provided to risk managers; it can easily be adjusted to the constantly evolving knowledge on AMR.  相似文献   

15.
Foot and mouth disease (FMD) is considered by many as the most important animal disease in the world. FMD is highly contagious and outbreaks incur significant costs as affected countries are severely limited in their ability to trade. A number of trade commodities may be contaminated with FMD virus (FMDV) including animal products, for example, meat. As a member of the European Union, Great Britain (GB) has put in place a number of regulations to prevent the importation of pathogens in imported meat products. However, the illegal importation of meat provides a route by which safety controls may be circumvented and meat from FMD affected areas may be imported. This study assesses the FMD infection risk posed to the livestock population of GB from the illegal importation of meat, and estimates the major contributors to this overall risk, through the development of a quantitative risk assessment model. From model results, the total amount of illegal meat entering GB each year is estimated on average to be 11,875 tonnes. with 90% certainty that this is between 4,398 and 28,626 tonnes per year; of which between 64.5 and 565 kg are contaminated with FMDV. This flow of illegal meat results in an estimate of a frequency of FMD infection in GB livestock of 0.015 cases of infected animals per year, with 90% certainty it is between 0.0017 and 0.053. Imports from the region Near and Middle East account for 47% of this risk, and 68% of the risk is attributed to bone-in and dried de-boned products.  相似文献   

16.
A risk assessment was conducted to determine the likelihood of certain health risks resulting from exposure to soils and food crops contaminated with polychlorinated biphenyl (PCBs). PCBs have contaminated soils, river sediments, and air in the past as a result of industrial activities at a capacitor plant located in the City of Serpukhov, Russian Federation. This risk assessment and suggestions for remediation are designed to aid in decision-making efforts by a joint Russian–American research team developing a community, national, and international response to industrial contamination. Bobovnikova et al. ( The Science of the Total Environment 139/140 , 357–364, [1993]) have reported that PCBs are elevated in soils and sediments, breast milk, and locally grown foods in the Serpukhov area. Data from these and other investigators have been used in this risk assessment to calculate a potential cancer risk resulting from exposure to PCBs. Our assessment indicates that members of the local population may be at increased risk of cancer, and possibly other adverse health effects, as a result of PCB contamination of their environment. Because previously unassessed environmental contamination is a common problem in the former Soviet Republics, as well as many other areas of the world, we believe this type of evaluation, using known methods, can serve as a model for assessment efforts in other parts of the globe and result in remediative efforts in regions constrained by faltering economies.  相似文献   

17.
The objective of meat inspection is to promote animal and public health by preventing, detecting, and controlling hazards originating from animals. With the improvements of sanitary level in pig herds, the hazards profile has shifted and the inspection procedures no longer target major foodborne pathogens (i.e., not risk based). Additionally, carcass manipulations performed when searching for macroscopic lesions can lead to cross‐contamination. We therefore developed a stochastic model to quantitatively describe cross‐contamination when consecutive carcasses are submitted to classic inspection procedures. The microbial hazard used to illustrate the model was Salmonella, the data set was obtained from Brazilian slaughterhouses, and some simplifying assumptions were made. The model predicted that due to cross‐contamination during inspection, the prevalence of contaminated carcass surfaces increased from 1.2% to 95.7%, whereas the mean contamination on contaminated surfaces decreased from 1 logCFU/cm² to ?0.87 logCFU/cm², and the standard deviations decreased from 0.65 to 0.19. These results are explained by the fact that, due to carcass manipulations with hands, knives, and hooks, including the cutting of contaminated lymph nodes, Salmonella is transferred to previously uncontaminated carcasses, but in small quantities. These small quantities can easily go undetected during sampling. Sensitivity analyses gave insight into the model performance and showed that the touching and cutting of lymph nodes during inspection can be an important source of carcass contamination. The model can serve as a tool to support discussions on the modernization of pig carcass inspection.  相似文献   

18.
In this paper, we present closed-form expressions, wherever possible, or devise algorithms otherwise, to determine the expectation and variance of a given schedule on a single machine. We consider a variety of completion time and due date-based objectives. The randomness in the scheduling process is due to variable processing times with known means and variances of jobs and, in some cases, a known underlying processing time distribution. The results that we present in this paper can enable evaluation of a schedule in terms of both the expectation and variance of a performance measure considered, and thereby, aid in obtaining a stable schedule. Additionally, the expressions and algorithms that are presented, can be incorporated in existing scheduling algorithms in order to determine expectation-variance efficient schedules.  相似文献   

19.
The objective of this study was to leverage quantitative risk assessment to investigate possible root cause(s) of foodborne illness outbreaks related to Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) infections in leafy greens in the United States. To this end, we developed the FDA leafy green quantitative risk assessment epidemic curve prediction model (FDA-LG QRA-EC) that simulated the lettuce supply chain. The model was used to predict the number of reported illnesses and the epidemic curve associated with lettuce contaminated with STEC O157 for a wide range of scenarios representing various contamination conditions and facility processing/sanitation practices. Model predictions were generated for fresh-cut and whole lettuce, quantifying the differing impacts of facility processing and home preparation on predicted illnesses. Our model revealed that the timespan (i.e., number of days with at least one reported illness) and the peak (i.e., day with the most predicted number of reported illnesses) of the epidemic curve of a STEC O157-lettuce outbreak were not strongly influenced by facility processing/sanitation practices and were indications of contamination pattern among incoming lettuce batches received by the facility or distribution center. Through comparisons with observed number of illnesses from recent STEC O157-lettuce outbreaks, the model identified contamination conditions on incoming lettuce heads that could result in an outbreak of similar size, which can be used to narrow down potential root cause hypotheses.  相似文献   

20.
A stochastic model for setting performance objectives for Salmonella in the broiler supply chain was developed. The goal of this study was to develop a model by which performance objectives for Salmonella prevalence at various points in the production chain can be determined, based on a preset final performance objective at the end of the processing line. The transmission of Salmonella through the broiler production chain was modeled. The prevalence at flock level was calculated from the measured prevalence at sample level. The transmission model is based on data on the occurrence of Salmonella collected in the Dutch broiler production chain during several years. The developed model can be used by policymakers and industry to determine economically and politically acceptable performance objectives for various points of the production chain and to draw conclusions about which interventions are most appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号