首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
水平井分段多簇压裂在现场得到了广泛运用,其压裂过程中普遍存在缝间干扰现象。缝间干扰有助于形成复 杂裂缝网络以提高储层导流能力,但是也会导致起裂困难,甚至形成砂堵。因此有必要对分段多簇压裂的缝间干扰问 题进行研究。对此,基于弹性力学建立了分析多簇裂缝诱导应力的数学模型,从起裂压力、裂缝宽度、簇间距等多方面 研究了缝间干扰对水平井分段多簇压裂施工的影响。模拟结果显示,诱导应力会导致起裂压力升高、裂缝变窄,严重 时将造成压裂施工失败。通过进行分析,给出了起裂过程及延伸过程中缝间干扰的影响关系。分析认为,利用缝间干 扰提高改造体积时应当控制簇间距防止对压裂施工造成负面影响。研究结论对优化水平井分段多簇压裂设计具有指 导意义。  相似文献   

2.
在砂泥岩互层的压裂施工中,由于压裂层数多且薄,所造缝的缝宽较窄,且由于支撑剂的大量嵌入,导致支撑裂缝导流能力进一步变差。为使裂缝参数与地层参数相匹配,在对不同粒径、铺砂浓度和支撑剂嵌入等复杂条件下的导流能力进行评价的基础上,进行了组合粒径实验研究,结果表明:尽管在闭合压力较小时,20/40目与16/30目组合粒径导流能力均与16/30目支撑剂有较大差距,但随着闭合压力的升高,使用组合粒径(20/40∶16/30=3∶1)获得的裂缝导流能力已经接近单一粒径(16/30目)的导流能力。现场对Y3438井优化得到了组合粒径的最佳比例,压裂施工后取得了显著效果。研究成果对胜利油田滩坝砂岩储层的压裂改造有重要的指导意义。  相似文献   

3.
裂缝性油藏中天然裂缝的存在使得液体滤失量大, 人工裂缝延伸扩展规律复杂, 压裂施工砂堵率高,如何提高该类油藏压裂效果是油藏改造领域的重大难题。针对乾北—大情字井地区裂缝发育程度, 压裂引起的储层污染等进行分析并开展高效压裂技术研究, 基于天然裂缝分布规律分析和油藏两个水平主应力差值与裂缝延伸净压力的关系, 提出了实现支撑天然裂缝的条件和工艺技术措施; 综合分析了压裂过程的伤害因素, 研发出能有效降解压裂液残渣的中高温生物酶破胶剂。研究成果在乾北—大情字井地区 16 口井应用, 增产效果明显, 为裂缝性油藏压裂改造提供了新思路。  相似文献   

4.
综合根据施工规模预测压裂效果和根据增产要求设计施工规模的两种设计思想体系,将裂缝三维延伸模拟技术应用于压裂施工设计,提出了从地层条件出发、以最佳的压裂效果为目标的水力压裂优化设计方法,通过不断地自动调整各段压裂液体积、地面加砂浓度、支撑剂类型和粒径等施工参数,设计出最优的施工方案,并在此基础上,采用Visual Basic语言研制了一套Windows环境下的三维压裂优化设计软件,在现场应用中取得了令人满意的施工效果。  相似文献   

5.
二次加砂压裂工艺处于技术探索阶段,缺少相关理论研究。在考虑二次加砂前,一次加砂已经在缝中沉降并形成一定高度的砂堤,砂堤高度随时间不断变化对缝中流体流动及后续支撑剂沉降产生影响,在此基础上建立了适用于二次加砂压裂的裂缝延伸模型。包括:压裂液在缝中流动的连续性方程、压降方程、裂缝宽度方程及高度方程。其中压降方程是在平板流理论、力学平衡原理的基础上建立起来的,与常规压降方程不同的是该方程考虑了砂堤高度变化对流体流动的影响。数值模拟结果表明二次压裂和常规压裂相比压后增产效果理想,具有推广应用的价值。  相似文献   

6.
针对射孔对水力压裂过程中的破裂压力以及裂缝形态的问题,通过建立不同射孔方位和不同远场主应力条件下裂缝扩展模型,将位移不连续方法(DDM)应用于水力压裂过程中的力学分析研究,同时在裂缝扩展准则上运用修正了的G准则—F准则并进行裂缝扩展规律研究。根据不同射孔方位和不同远场主应力条件下裂缝扩展的模拟计算,在地应力大小和方位确定的情况下,破裂压力随着射孔方位的增大而升高,并且随着方位角的增大,裂缝形态会发生转向,而且裂缝壁面粗糙,会增大压裂液摩阻。对于实际的射孔参数优化设计和压裂施工具有参考意义  相似文献   

7.
压裂缝改变了水平井周围的渗流场,是影响压裂水平井产能的主要因素,压裂前需研究裂缝参数对压裂水平井产能的影响趋势。利用电模拟实验研究了水平井筒与压裂缝成不同夹角的压裂水平井的等压线分布特点及压裂缝各参数对压裂水平井产能的影响。结果表明:夹角改变了压裂水平井等压线的形状,等压线因夹角而发生了扭转,随夹角增大相同压力的等压线所控制的泄流面积增加,且产能随夹角α的增大而增大,与sinα成明显的线性关系;在具体的油藏地质条件下,存在裂缝夹角、裂缝数、裂缝长度、水平井筒长度及裂缝间距的最优匹配关系。电模拟实验结果为压裂水平井的施工设计和其产能预测提供了理论依据。  相似文献   

8.
针对页岩气藏压裂形成复杂裂缝网络后,单一的裂缝描述方法不再适用的问题,采用Eclipse 软件中的页岩 气模型,建立了一种“等效方法”,将页岩气有效改造体积表征为“主裂缝+ 网络裂缝渗透率”,代替“主裂缝+ 次裂 缝”的模拟方法,两种方法产量和长期压力驱替是等效的,解决了手工划分网格工作量大、计算速度慢的问题。运用 Plackett-Burman 型线性试验设计方法,对水力裂缝参数和储层参数进行敏感性排序,结果表明:水力裂缝参数中,压裂 纵向改造程度、网络裂缝渗透率和有效改造体积对产量影响最敏感,储层参数对产量影响敏感程度由强到弱为:地层 压力系数、总含气量、储层有效厚度、吸附气比例、井底流压、基质渗透率。为页岩气压裂选井选层和压裂设计方案优 化提供了依据。  相似文献   

9.
从构造裂缝的形成机制出发,对库车拗陷A 气田砂泥岩互层中构造裂缝的发育规律进行了探讨,分析了其影响因素,并建立了砂泥岩互层构造裂缝发育模型。分析认为,受砂岩脆性特征和泥岩韧塑性特征的影响,砂泥岩互层中的构造裂缝首先在砂岩层中产生,并逐渐向泥岩层扩展形成裂缝网络。脆性岩层较塑性岩层更易产生大量裂缝,因此,在砂泥岩互层中砂岩层的裂缝密度大于泥岩层,同时,由于砂岩和泥岩内摩擦角的差异,裂缝在砂岩层中的平均倾角也大于泥岩层。单个砂岩层或泥岩层的厚度越小,对裂缝的发育越有利。强非均质性地层较均质地层裂缝更为发育,但共轭剪破裂中的一组裂缝会受到抑制,而以另一组裂缝为主。库车拗陷A 气田砂泥岩互层中泥岩层的厚度小于4.0 m 的裂缝穿透极限值,表明裂缝可以穿透泥岩层将砂岩层连通,形成大段连续的油气储集空间。最后,根据理论分析建立了砂泥岩互层构造裂缝的发育模型。  相似文献   

10.
高能气体压裂和脉冲压裂能在近井地带形成多条径向裂缝,对此建立了均质油藏和双重介质油藏多裂缝系统垂直裂缝井的物理模型。利用叠加原理,在单裂缝系统压力分布公式的基础上,得到了多裂缝系统垂直裂缝井不稳定渗流压力响应的计算方法,绘制并分析了油藏参数、裂缝条数和裂缝分布影响下的压力动态典型曲线。结果表明:流体在多裂缝系统的流动特征与裂缝条数和裂缝分布有关,当裂缝条数较少并且夹角较大时,压力动态曲线主要分为3个流动阶段:线性流段、椭圆流段和拟径向流段;当裂缝较多或者夹角较小时,由于裂缝之间相互影响,线性流段和椭圆流段之间的过渡段变长,线性流段可能消失;裂缝条数越多,供液能力越强,相同时间下,井底压力下降得越少。  相似文献   

11.
由疏水缔合聚合物AP–P4 和酚醛树脂预聚体YG103 交联得到了酚醛树脂冻胶,研究了酚醛树脂冻胶的流变性和粘弹性,并对疏水缔合聚合物和酚醛树脂冻胶的粘弹性进行了对比。研究表明,酚醛树脂冻胶成胶过程可分为缓慢诱导阶段、快速增长阶段和稳定阶段。酚醛树脂冻胶的剪切应力具有时间依赖性和滞后特性,在外力作用一段时间后冻胶的应变可较好地恢复。与聚合物溶液相比,酚醛树脂冻胶具有更宽的线性粘弹性区域和更高的储能模量和损耗模量。在低频率下该冻胶的储能模量比损耗模量大,随着频率的增加,储能模量和损耗模量均增加;随着聚合物和交联剂质量分数的增加,冻胶体系的储能模量和损耗模量 均增加;随着矿化度的增加,冻胶体系的储能模量和损耗模量出现先降低—增加—降低的过程。  相似文献   

12.
基于三向地应力和气体压力作用下水平井筒周围围岩的受力特点,通过引入加权函数,并采用与时间相关的爆生气体压力分布方程,应用弹性力学、断裂力学理论给出了多级脉冲气体加载压  相似文献   

13.
水力压裂是油气藏增产的重要措施, 压裂工艺技术发展、 应用至今, 还没有一种方法能够既经济又准确地评估水力裂缝。针对现有各种评估技术 (直接诊断技术和间接诊断技术) 评估结果具有多样性、 不确定性以及技术本身的不成熟性等不足, 探索了压后综合评估技术; 对有关压裂参数 (裂缝长度、 裂缝宽度、 裂缝高度、 压裂液综合滤失系数、 裂缝导流能力、 裂缝闭合压力等) 提出了基于不确定理论的综合评估模型及求解方法。由于综合了各种技术的评估结果 (确定、 模糊和灰性的信息) , 最终可获得客观的评估结果。实例表明该模型是有效的和实用的。  相似文献   

14.
随着大位移井数量的增加,大位移井压裂逐渐成为油气藏的一种重要增产技术手段。大位移井水力压裂裂缝起裂与直井、普通定向井有显著差别,其起裂模式不仅与井眼轨迹(井斜角、方位角等) 有关,而且还与地应力方位密切相关。以往的斜井裂缝起裂模式已经不能满足大位移井压裂设计的需要。考虑作业条件、压裂液渗滤效应和孔隙压力的影响,建立了大位移井井筒周围应力场分布模型,提出了裂缝起裂压力和起裂方位预测模型,并分析了不同构造应力范围对大位移井压裂裂缝起裂的影响。计算结果表明,建立的模型完全适用于大位移井压裂设计的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号