首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

2.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

3.
4.
In this work, we define a new method of ranked set sampling (RSS) which is suitable when the characteristic (variable) Y of primary interest on the units is jointly distributed with an auxiliary characteristic X on which one can take its measurement on any number of units, so that units having record values on X alone are ranked and retained for making measurement on Y. We name this RSS as concomitant record ranked set sampling (CRRSS). We propose estimators of the parameters associated with the variable Y of primary interest based on observations of the proposed CRRSS which are applicable to a very large class of distributions viz. Morgenstern family of distributions. We illustrate the application of CRRSS and our estimation technique of parameters, when the basic distribution is Morgenstern-type bivariate logistic distribution. A primary data collected by CRRSS method is demonstrated and the obtained data used to illustrate the results developed in this work.  相似文献   

5.
Let X1, …, Xp be independent random variables, all having the same distribution up to a possibly varying unspecified parameter, where each of the p distributions belongs to the family of one parameter discrete exponential distributions. The problem is to estimate the unknown parameters simultaneously. Hudson (1978) shows that the minimum variance unbiased estimator (MVUE) of the parameters is inadmissible under squared error loss, and estimators better than the MVUE are proposed. Essentially, these estimators shrink the MVUE towards the origin. In this paper, we indicate that estimators shifting the MVUE towards a point different from the origin or a point determined by the observations can be obtained.  相似文献   

6.
When classification rules are constructed using sample estimatest it is known that the probability of misclassification is not minimized. This article introduces a biased minimum X2 rule to classify items from a multivariate normal population. Using the principle of variance reduction, the probability of misclassification is reduced when the biased procedure is employed. Results of sampling experiments over a broad range of conditions are provided to demonstrate this improvement.  相似文献   

7.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

8.
Abstract

Cluster analysis is the distribution of objects into different groups or more precisely the partitioning of a data set into subsets (clusters) so that the data in subsets share some common trait according to some distance measure. Unlike classification, in clustering one has to first decide the optimum number of clusters and then assign the objects into different clusters. Solution of such problems for a large number of high dimensional data points is quite complicated and most of the existing algorithms will not perform properly. In the present work a new clustering technique applicable to large data set has been used to cluster the spectra of 702248 galaxies and quasars having 1,540 points in wavelength range imposed by the instrument. The proposed technique has successfully discovered five clusters from this 702,248X1,540 data matrix.  相似文献   

9.
If X and Y are gamma distributed independent random variables then it is well known that the ratio X / (X + Y) has the beta distribution. In this note, the distribution of W = X / (X + Y) is considered when X and Y have the compound gamma distribution. We refer to the distribution of W as compound beta and describe an application to consumer price indices to show that compound beta is a better model than one based on the standard beta distribution. We derive various properties of W, including its probability density function, cumulative distribution function, hazard rate function and moments.  相似文献   

10.
The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this paper, the exact distributions of the linear combination α XY, the product |X Y| and the ratio |X/Y| are derived when X and Y are independent Laplace random variables. The Laplace distribution, being the oldest model for continuous data, has been one of the most popular models for measurement errors in engineering.  相似文献   

11.
“Nonparametric” in the title is used to say that observations X 1,…,X n come from an unknown distribution F ∈ ? with ? being the class of all continuous and strictly increasing distribution functions. The problem is to estimate the quantile of a given order q ∈ (0,1) of the distribution F. The class ? of distributions is very large; it is so large that even X nq:n , where nq is an integer, may be very poor estimator of the qth quantile. To assess the performance of estimators no properties based on moments may be used: expected values of estimators should be replaced by their medians, their variances—by some characteristics of concentration of distributions around the median. If an estimator is median-biased for one of distributions, the bias of the estimator may be infinitely large for other distributions. In the note optimal estimators with respect to various criteria of optimality are presented. The pivotal function F(T) of the estimator T is introduced which enables us to apply the classical statistical approach.  相似文献   

12.
In a 1965 Decision Theory course at Stanford University, Charles Stein began a digression with “an amusing problem”: is there a proper confidence interval for the mean based on a single observation from a normal distribution with both mean and variance unknown? Stein introduced the interval with endpoints ± c|X| and showed indeed that for c large enough, the minimum coverage probability (over all values for the mean and variance) could be made arbitrarily near one. While the problem and coverage calculation were in the author’s hand-written notes from the course, there was no development of any optimality result for the interval. Here, the Hunt–Stein construction plus analysis based on special features of the problem provides a “minimax” rule in the sense that it minimizes the maximum expected length among all procedures with fixed coverage (or, equivalently, maximizes the minimal coverage among all procedures with a fixed expected length). The minimax rule is a mixture of two confidence procedures that are equivariant under scale and sign changes, and are uniformly better than the classroom example or the natural interval X ± c|X|?.  相似文献   

13.
This paper deals with the estimation of the stress–strength parameter R=P(Y<X), when X and Y are independent exponential random variables, and the data obtained from both distributions are progressively type-II censored. The uniformly minimum variance unbiased estimator and the maximum-likelihood estimator (MLE) are obtained for the stress–strength parameter. Based on the exact distribution of the MLE of R, an exact confidence interval of R has been obtained. Bayes estimate of R and the associated credible interval are also obtained under the assumption of independent inverse gamma priors. An extensive computer simulation is used to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose.  相似文献   

14.
Consider using values of variables X 1, X 2,…, X p to classify entities into one of two classes. Kernel-based procedures such as support vector machines (SVMs) are well suited for this task. In general, the classification accuracy of SVMs can be substantially improved if instead of all p candidate variables, a smaller subset of (say m) variables is used. A new two-step approach to variable selection for SVMs is therefore proposed: best variable subsets of size k = 1,2,…, p are first identified, and then a new data-dependent criterion is used to determine a value for m. The new approach is evaluated in a Monte Carlo simulation study, and on a sample of data sets.  相似文献   

15.
DISTRIBUTIONAL CHARACTERIZATIONS THROUGH SCALING RELATIONS   总被引:2,自引:0,他引:2  
Investigated here are aspects of the relation between the laws of X and Y where X is represented as a randomly scaled version of Y. In the case that the scaling has a beta law, the law of Y is expressed in terms of the law of X. Common continuous distributions are characterized using this beta scaling law, and choosing the distribution function of Y as a weighted version of the distribution function of X, where the weight is a power function. It is shown, without any restriction on the law of the scaling, but using a one‐parameter family of weights which includes the power weights, that characterizations can be expressed in terms of known results for the power weights. Characterizations in the case where the distribution function of Y is a positive power of the distribution function of X are examined in two special cases. Finally, conditions are given for existence of inverses of the length‐bias and stationary‐excess operators.  相似文献   

16.
In this work, we develop a method of adaptive non‐parametric estimation, based on ‘warped’ kernels. The aim is to estimate a real‐valued function s from a sample of random couples (X,Y). We deal with transformed data (Φ(X),Y), with Φ a one‐to‐one function, to build a collection of kernel estimators. The data‐driven bandwidth selection is performed with a method inspired by Goldenshluger and Lepski (Ann. Statist., 39, 2011, 1608). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right‐censored data, and cumulative distribution function estimation from current‐status data. The interest is threefold. First, the squared‐bias/variance trade‐off is automatically realized. Next, non‐asymptotic risk bounds are derived. Lastly, the estimator is easily computed, thanks to its simple expression: a short simulation study is presented.  相似文献   

17.
Laplace distributions are becoming increasingly popular models in economics and finance. In this note, the exact distribution of the ratio Z=|X/Y| is derived when X and Y are independent Laplace random variables. This distribution arises when one is interested in comparing the performances of two economic or financial entities. We consider estimation issues of the distribution and illustrate an application for consumer price indices from the six major economics. Several computer programs are given for implementation of the methods used.  相似文献   

18.
For two dependent random variables X and Y with distributions of convolution equivalence, sufficient conditions are given under which the distribution of the minimum min (X, Y) is still of convolution equivalence. We further extend the result to the multivariate case.  相似文献   

19.
The normal and Laplace are the two earliest known continuous distributions in statistics and the two most popular models for analyzing symmetric data. In this note, the exact distribution of the ratio | X / Y | is derived when X and Y are respectively normal and Laplace random variables distributed independently of each other. A MAPLE program is provided for computing the associated percentage points. An application of the derived distribution is provided to a discriminant problem.  相似文献   

20.
In the standard linear regression model with independent, homoscedastic errors, the Gauss—Markov theorem asserts that = (X'X)-1(X'y) is the best linear unbiased estimator of β and, furthermore, that is the best linear unbiased estimator of c'β for all p × 1 vectors c. In the corresponding random regressor model, X is a random sample of size n from a p-variate distribution. If attention is restricted to linear estimators of c'β that are conditionally unbiased, given X, the Gauss—Markov theorem applies. If, however, the estimator is required only to be unconditionally unbiased, the Gauss—Markov theorem may or may not hold, depending on what is known about the distribution of X. The results generalize to the case in which X is a random sample without replacement from a finite population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号