首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Summary.  The method of Bayesian model selection for join point regression models is developed. Given a set of K +1 join point models M 0,  M 1, …,  M K with 0, 1, …,  K join points respec-tively, the posterior distributions of the parameters and competing models M k are computed by Markov chain Monte Carlo simulations. The Bayes information criterion BIC is used to select the model M k with the smallest value of BIC as the best model. Another approach based on the Bayes factor selects the model M k with the largest posterior probability as the best model when the prior distribution of M k is discrete uniform. Both methods are applied to analyse the observed US cancer incidence rates for some selected cancer sites. The graphs of the join point models fitted to the data are produced by using the methods proposed and compared with the method of Kim and co-workers that is based on a series of permutation tests. The analyses show that the Bayes factor is sensitive to the prior specification of the variance σ 2, and that the model which is selected by BIC fits the data as well as the model that is selected by the permutation test and has the advantage of producing the posterior distribution for the join points. The Bayesian join point model and model selection method that are presented here will be integrated in the National Cancer Institute's join point software ( http://www.srab.cancer.gov/joinpoint/ ) and will be available to the public.  相似文献   

2.
3.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

4.
Mode Jumping Proposals in MCMC   总被引:1,自引:1,他引:0  
Markov chain Monte Carlo algorithms generate samples from a target distribution by simulating a Markov chain. Large flexibility exists in specification of transition matrix of the chain. In practice, however, most algorithms used only allow small changes in the state vector in each iteration. This choice typically causes problems for multi-modal distributions as moves between modes become rare and, in turn, results in slow convergence to the target distribution. In this paper we consider continuous distributions on R n and specify how optimization for local maxima of the target distribution can be incorporated in the specification of the Markov chain. Thereby, we obtain a chain with frequent jumps between modes. We demonstrate the effectiveness of the approach in three examples. The first considers a simple mixture of bivariate normal distributions, whereas the two last examples consider sampling from posterior distributions based on previously analysed data sets.  相似文献   

5.
Summary.  Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies.  相似文献   

6.
In this paper, I explore the usage of positive definite metric tensors derived from the second derivative information in the context of the simplified manifold Metropolis adjusted Langevin algorithm. I propose a new adaptive step size procedure that resolves the shortcomings of such metric tensors in regions where the log‐target has near zero curvature in some direction. The adaptive step size selection also appears to alleviate the need for different tuning parameters in transient and stationary regimes that is typical of Metropolis adjusted Langevin algorithm. The combination of metric tensors derived from the second derivative information and the adaptive step size selection constitute a large step towards developing reliable manifold Markov chain Monte Carlo methods that can be implemented automatically for models with unknown or intractable Fisher information, and even for target distributions that do not admit factorization into prior and likelihood. Through examples of low to moderate dimension, I show that the proposed methodology performs very well relative to alternative Markov chain Monte Carlo methods.  相似文献   

7.
A method to create a Markov transition matrix for Markov chain Monte Carlo studies is presented and applied to the Fibonacci probability distribution.  相似文献   

8.
Abstract.  In the Bayesian approach to ill-posed inverse problems, regularization is imposed by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo samplers are used to extract information about its posterior distribution. The aim of this paper is to investigate the convergence properties of the random-scan random-walk Metropolis (RSM) algorithm for posterior distributions in ill-posed inverse problems. We provide an accessible set of sufficient conditions, in terms of the observational model and the prior, to ensure geometric ergodicity of RSM samplers of the posterior distribution. We illustrate how these conditions can be checked in an application to the inversion of oceanographic tracer data.  相似文献   

9.
10.
Summary.  The data that are analysed are from a monitoring survey which was carried out in 1994 in the forests of Baden-Württemberg, a federal state in the south-western region of Germany. The survey is part of a large monitoring scheme that has been carried out since the 1980s at different spatial and temporal resolutions to observe the increase in forest damage. One indicator for tree vitality is tree defoliation, which is mainly caused by intrinsic factors, age and stand conditions, but also by biotic (e.g. insects) and abiotic stresses (e.g. industrial emissions). In the survey, needle loss of pine-trees and many potential covariates are recorded at about 580 grid points of a 4 km × 4 km grid. The aim is to identify a set of predictors for needle loss and to investigate the relationships between the needle loss and the predictors. The response variable needle loss is recorded as a percentage in 5% steps estimated by eye using binoculars and categorized into healthy trees (10% or less), intermediate trees (10–25%) and damaged trees (25% or more). We use a Bayesian cumulative threshold model with non-linear functions of continuous variables and a random effect for spatial heterogeneity. For both the non-linear functions and the spatial random effect we use Bayesian versions of P -splines as priors. Our method is novel in that it deals with several non-standard data requirements: the ordinal response variable (the categorized version of needle loss), non-linear effects of covariates, spatial heterogeneity and prediction with missing covariates. The model is a special case of models with a geoadditive or more generally structured additive predictor. Inference can be based on Markov chain Monte Carlo techniques or mixed model technology.  相似文献   

11.
A method for the Bayesian restoration of noisy binary images portraying an object with constant grey level on a background is presented. The restoration, performed by fitting a polygon with any number of sides to the object's outline, is driven by a new probabilistic model for the generation of polygons in a compact subset of R2 , which is used as a prior distribution for the polygon. Some measurability issues raised by the correct specification of the model are addressed. The simulation from the prior and the calculation of the a posteriori mean of grey levels are carried out through reversible jump Markov chain Monte Carlo computation, whose implementation and convergence properties are also discussed. One example of restoration of a synthetic image is presented and compared with existing pixel-based methods.  相似文献   

12.
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates.  相似文献   

13.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

14.
In this work, we assume that the sequence recording whether or not an ozone exceedance of an environmental threshold has occurred in a given day is ruled by a non-homogeneous Markov chain of order one. In order to account for the possible presence of cycles in the empirical transition probabilities, a parametric form incorporating seasonal components is considered. Results show that even though some covariates (namely, relative humidity and temperature) are not included explicitly in the model, their influence is captured in the behavior of the transition probabilities. Parameters are estimated using the Bayesian point of view via Markov chain Monte Carlo algorithms. The model is applied to ozone data obtained from the monitoring network of Mexico City, Mexico. An analysis of how the methodology could be used as an aid in the decision-making is also given.  相似文献   

15.
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.  相似文献   

16.
We define a notion of de-initializing Markov chains. We prove that to analyse convergence of Markov chains to stationarity, it suffices to analyse convergence of a de-initializing chain. Applications are given to Markov chain Monte Carlo algorithms and to convergence diagnostics.  相似文献   

17.
Summary.  We deal with contingency table data that are used to examine the relationships between a set of categorical variables or factors. We assume that such relationships can be adequately described by the cond`itional independence structure that is imposed by an undirected graphical model. If the contingency table is large, a desirable simplified interpretation can be achieved by combining some categories, or levels, of the factors. We introduce conditions under which such an operation does not alter the Markov properties of the graph. Implementation of these conditions leads to Bayesian model uncertainty procedures based on reversible jump Markov chain Monte Carlo methods. The methodology is illustrated on a 2×3×4 and up to a 4×5×5×2×2 contingency table.  相似文献   

18.
Given spatially located observed random variables ( x , z = {( x i , z i )} i , we propose a new method for non-parametric estimation of the potential functions of a Markov random field p ( x | z ), based on a roughness penalty approach. The new estimator maximizes the penalized log-pseudolikelihood function and is a natural cubic spline. The calculations involved do not rely on Monte Carlo simulation. We suggest the use of B-splines to stabilize the numerical procedure. An application in Bayesian image reconstruction is described.  相似文献   

19.
Summary.  Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modelling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies that were conducted at specific household locations as well as 15 ambient monitoring sites in the area. The models allow for both flexible non-linear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalized spline formulation of the model that relates to generalized kriging of the latent traffic pollution variable and leads to a natural Bayesian Markov chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degrees of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately.  相似文献   

20.
The Finnish common toad data of Heikkinen and Hogmander are reanalysed using an alternative fully Bayesian model that does not require a pseudolikelihood approximation and an alternative prior distribution for the true presence or absence status of toads in each 10 km×10 km square. Markov chain Monte Carlo methods are used to obtain posterior probability estimates of the square-specific presences of the common toad and these are presented as a map. The results are different from those of Heikkinen and Hogmander and we offer an explanation in terms of the prior used for square-specific presence of the toads. We suggest that our approach is more faithful to the data and avoids unnecessary confounding of effects. We demonstrate how to extend our model efficiently with square-specific covariates and illustrate this by introducing deterministic spatial changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号