首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change-point problem for normal regression models is considered here as the problem of choosing the hypothesis H0 of no change or one of the hypotheses Hi that one or more parameters change after the ith observation. The observations are often associated with a known increasing sequence τi (for example, τi is the date of the ith observation). It then seems natural to introduce a quadratic loss function involving (τiτj)2 for selecting Hi instead of the true hypothesis Hj. A Bayes optimal invariant procedure is derived within such a framework and compared to previous proposals. When H0 is rejected, large errors may arise in the estimation of the change point. To get around this difficulty another procedure is introduced whose main feature is to select one of the Hi's when H0 is rejected only if there is sufficient evidence in favour of this choice.  相似文献   

2.
Consider a linear regression model with regression parameter β=(β1,…,βp) and independent normal errors. Suppose the parameter of interest is θ=aTβ, where a is specified. Define the s-dimensional parameter vector τ=CTβt, where C and t are specified. Suppose that we carry out a preliminary F test of the null hypothesis H0:τ=0 against the alternative hypothesis H1:τ≠0. It is common statistical practice to then construct a confidence interval for θ with nominal coverage 1−α, using the same data, based on the assumption that the selected model had been given to us a priori (as the true model). We call this the naive 1−α confidence interval for θ. This assumption is false and it may lead to this confidence interval having minimum coverage probability far below 1−α, making it completely inadequate. We provide a new elegant method for computing the minimum coverage probability of this naive confidence interval, that works well irrespective of how large s is. A very important practical application of this method is to the analysis of covariance. In this context, τ can be defined so that H0 expresses the hypothesis of “parallelism”. Applied statisticians commonly recommend carrying out a preliminary F test of this hypothesis. We illustrate the application of our method with a real-life analysis of covariance data set and a preliminary F test for “parallelism”. We show that the naive 0.95 confidence interval has minimum coverage probability 0.0846, showing that it is completely inadequate.  相似文献   

3.
Let X1,…,Xn be a sample from a population with continuous distribution function F(x?θ) such that F(x)+F(-x)=1 and 0<F(x)<1, x?R1. It is shown that the power- function of a monotone test of H: θ=θ0 against K: θ>θ0 cannot tend to 1 as θ?θ0 → ∞ more than n times faster than the tails of F tend to 0. Some standard as well as robust tests are considered with respect to this rate of convergence.  相似文献   

4.
Let {X j , j ≥ 1} be a strictly stationary negatively or positively associated sequence of real valued random variables with unknown distribution function F(x). On the basis of the random variables {X j , j ≥ 1}, we propose a smooth recursive kernel-type estimate of F(x), and study asymptotic bias, quadratic-mean consistency and asymptotic normality of the recursive kernel-type estimator under suitable conditions.  相似文献   

5.
Let {xij(1 ? j ? ni)|i = 1, 2, …, k} be k independent samples of size nj from respective distributions of functions Fj(x)(1 ? j ? k). A classical statistical problem is to test whether these k samples came from a common distribution function, F(x) whose form may or may not be known. In this paper, we consider the complementary problem of estimating the distribution functions suspected to be homogeneous in order to improve the basic estimator known as “empirical distribution function” (edf), in an asymptotic setup. Accordingly, we consider four additional estimators, namely, the restricted estimator (RE), the preliminary test estimator (PTE), the shrinkage estimator (SE), and the positive rule shrinkage estimator (PRSE) and study their characteristic properties based on the mean squared error (MSE) and relative risk efficiency (RRE) with tables and graphs. We observed that for k ? 4, the positive rule SE performs uniformly better than both shrinkage and the unrestricted estimator, while PTEs works reasonably well for k < 4.  相似文献   

6.
We will consider the following problem.Maximise Φ(p)over P={p=(p1,P2,…,pj):Pj≧0,∑pj=1}". We require to calcute an optimizing distribution. Examples arise in optimal regression design,maximum likelihood estimation and stratified sazmpling problems. A class of multiplicative algorithms, indexed by functions which depend on the derivatives of Φ(·)is considered for solving this problem.Iterations are of the form:pj (r+1)αpj (r)f(xj (r)), where xj (r)=dj (r) or Fj (r)and dj (r)=?Φ/?pj While Fj (r)=Dj (r)?∑pi (r)di (r) (a directional derivative)at p=p(r)f(·)satisfies some suitable properties and may depend on one or more free parameters. These iterations neatly submit to the constraints ofv the problem. Some results will be reported and extensions to problems dependin on two or more distributions and to problems with additional constraints will be considered.  相似文献   

7.
In experiments, the classical (ANOVA) F-test is often used to test the omnibus null-hypothesis μ1 = μ2 ... = μ j = ... = μ n (all n population means are equal) in a one-way ANOVA design, even when one or more basic assumptions are being violated. In the first part of this article, we will briefly discuss the consequences of the different types of violations of the basic assumptions (dependent measurements, non-normality, heteroscedasticity) on the validity of the F-test. Secondly, we will present a simulation experiment, designed to compare the type I-error and power properties of both the F-test and some of its parametric adaptations: the Brown & Forsythe F*-test and Welch’s Vw-test. It is concluded that the Welch Vw-test offers acceptable control over the type I-error rate in combination with (very) high power in most of the experimental conditions. Therefore, its use is highly recommended when one or more basic assumptions are being violated. In general, the use of the Brown & Forsythe F*-test cannot be recommended on power considerations unless the design is balanced and the homoscedasticity assumption holds.  相似文献   

8.
9.
In this article, we consider a sample point (t j , s j ) including a value s j  = f(t j ) at height s j and abscissa (time or location) t j . We apply wavelet decomposition by using shifts and dilations of the basic Häar transform and obtain an algorithm to analyze a signal or function f. We use this algorithm in practical to approximating function by numerical example. Some relationships between wavelets coefficients and asymptotic distribution of wavelet coefficients are investigated. At the end, we illustrate the results on simulated data by using MATLAB and R software.  相似文献   

10.
In this paper we address the dependence structure of the minimum and maximum of n iid random variables X1,…,Xn by determining their copula. It is then easy to give an alternative proof for their asymptotic independence and to calculate Kendall's τ and Spearman's ρ for (X(1),X(n)). This will show that the dependence between the variables is already small for small sample sizes. Finally, it can be shown that 3τnρnτn>0. Although closed-form expressions are available for τn and ρn, we cannot compare them directly but have to use the concept of positive likelihood ratio dependence to establish this result.  相似文献   

11.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

12.
In this paper, we obtain some results for the asymptotic behavior of the tail probability of a random sum Sτ = ∑τk = 1Xk, where the summands Xk, k = 1, 2, …, are conditionally dependent random variables with a common subexponential distribution F, and the random number τ is a non negative integer-valued random variable, independent of {Xk: k ? 1}.  相似文献   

13.
In the usual two-way layout of ANOVA (interactions are admitted) let nij ? 1 be the number of observations for the factor-level combination(i, j). For testing the hypothesis that all main effects of the first factor vanish numbers n1ij are given such that the power function of the F-test is uniformly maximized (U-optimality), if one considers only designs (nij) for which the row-sums ni are prescribed. Furthermore, in the (larger) set of all designs for which the total number of observations is given, all D-optimum designs are constructed.  相似文献   

14.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

15.
16.
Let F = {F0: 0 ϵ Θ} denote the class of natural exponential family of distributions having power variance function, (NEF-PVF). We consider the problem of sequentially estimating the mean μ of F0 ϵ F, based on i.i.d. observations from F0. We propose an appropriate sequential estimation procedure under a combined loss of estimation error and sampling cost. We provide expansion for the regret Ra and study its asymptotic properties. We show that Ra = cv2(μ) + o(1) as a → ∞, where c > 0 is a known constant and v(μ) denotes the coefficient of variation of F0.  相似文献   

17.
Optimality properties of approximate block designs are studied under variations of (1) the class of competing designs, (2) the optimality criterion, (3) the parametric function of interest, and (4) the statistical model. The designs which are optimal turn out to be the product of their treatment and block marginals, and uniform designs when the support is specified in advance. Optimality here means uniform, universal, and simultaneous jp-optimality. The classical balanced incomplete block designs are embedded into this approach, and shown to be simultaneously jp-optimal for a maximal system of identifiable parameters. A geometric account of universal optimality is given which applies beyond the context of block designs.  相似文献   

18.
We consider the signed linear rank statistics of the form
SΔN= i=1N cNiø(RΔNi(N+1))sgn YΔNi
where the cNi's are known real numbers, Δ∈[0,1] is an unknown real parameter,RΔNi is the rank of |YΔNi| among |YΔNj|, 1≤jN, ø is a score generating function, sgn y=1 or -1 according as y≥0 or <0, and YΔNj, 1≤jN, are independent random variables with continuous cumulative distribution functions F(y?ΔdNj), 1≤ jN, respectively where the dfNi's are known real numbers. Under suitable assumptions on the c's, d's, φ and F, it is proved that the random process {SΔN?S0N?ESΔN, 0≤Δ≤1}, properly normalized, converges weakly to a Gaussian process, and this result is also true if ESΔN is replaced by ΔbN, where
bN=4 i=1N cNidNi0 ø′(2F(x)?1)?2(x)dx and ?=F′
. As an application, we derive the asymptotic distribution of the properly normalized length of a confidence interval for Δ.  相似文献   

19.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号