首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In drug development, after completion of phase II proof‐of‐concept trials, the sponsor needs to make a go/no‐go decision to start expensive phase III trials. The probability of statistical success (PoSS) of the phase III trials based on data from earlier studies is an important factor in that decision‐making process. Instead of statistical power, the predictive power of a phase III trial, which takes into account the uncertainty in the estimation of treatment effect from earlier studies, has been proposed to evaluate the PoSS of a single trial. However, regulatory authorities generally require statistical significance in two (or more) trials for marketing licensure. We show that the predictive statistics of two future trials are statistically correlated through use of the common observed data from earlier studies. Thus, the joint predictive power should not be evaluated as a simplistic product of the predictive powers of the individual trials. We develop the relevant formulae for the appropriate evaluation of the joint predictive power and provide numerical examples. Our methodology is further extended to the more complex phase III development scenario comprising more than two (K > 2) trials, that is, the evaluation of the PoSS of at least k0 () trials from a program of K total trials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs.  相似文献   

3.
Evidence‐based quantitative methodologies have been proposed to inform decision‐making in drug development, such as metrics to make go/no‐go decisions or predictions of success, identified with statistical significance of future clinical trials. While these methodologies appropriately address some critical questions on the potential of a drug, they either consider the past evidence without predicting the outcome of the future trials or focus only on efficacy, failing to account for the multifaceted aspects of a successful drug development. As quantitative benefit‐risk assessments could enhance decision‐making, we propose a more comprehensive approach using a composite definition of success based not only on the statistical significance of the treatment effect on the primary endpoint but also on its clinical relevance and on a favorable benefit‐risk balance in the next pivotal studies. For one drug, we can thus study several development strategies before starting the pivotal trials by comparing their predictive probability of success. The predictions are based on the available evidence from the previous trials, to which new hypotheses on the future development could be added. The resulting predictive probability of composite success provides a useful summary to support the discussions of the decision‐makers. We present a fictive, but realistic, example in major depressive disorder inspired by a real decision‐making case.  相似文献   

4.
Phase II trials evaluate whether a new drug or a new therapy is worth further pursuing or certain treatments are feasible or not. A typical phase II is a single arm (open label) trial with a binary clinical endpoint (response to therapy). Although many oncology Phase II clinical trials are designed with a two-stage procedure, multi-stage design for phase II cancer clinical trials are now feasible due to increased capability of data capture. Such design adjusts for multiple analyses and variations in analysis time, and provides greater flexibility such as minimizing the number of patients treated on an ineffective therapy and identifying the minimum number of patients needed to evaluate whether the trial would warrant further development. In most of the NIH sponsored studies, the early stopping rule is determined so that the number of patients treated on an ineffective therapy is minimized. In pharmaceutical trials, it is also of importance to know as early as possible if the trial is highly promising and what is the likelihood the early conclusion can sustain. Although various methods are available to address these issues, practitioners often use disparate methods for addressing different issues and do not realize a single unified method exists. This article shows how to utilize a unified approach via a fully sequential procedure, the sequential conditional probability ratio test, to address the multiple needs of a phase II trial. We show the fully sequential program can be used to derive an optimized efficient multi-stage design for either a low activity or a high activity, to identify the minimum number of patients required to assess whether a new drug warrants further study and to adjust for unplanned interim analyses. In addition, we calculate a probability of discordance that the statistical test will conclude otherwise should the trial continue to the planned end that is usually at the sample size of a fixed sample design. This probability can be used to aid in decision making in a drug development program. All computations are based on exact binomial distribution.  相似文献   

5.
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u‐shape very similar, but not equal, to a β‐distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Owing to increased costs and competition pressure, drug development becomes more and more challenging. Therefore, there is a strong need for improving efficiency of clinical research by developing and applying methods for quantitative decision making. In this context, the integrated planning for phase II/III programs plays an important role as numerous quantities can be varied that are crucial for cost, benefit, and program success. Recently, a utility‐based framework has been proposed for an optimal planning of phase II/III programs that puts the choice of decision boundaries and phase II sample sizes on a quantitative basis. However, this method is restricted to studies with a single time‐to‐event endpoint. We generalize this procedure to the setting of clinical trials with multiple endpoints and (asymptotically) normally distributed test statistics. Optimal phase II sample sizes and go/no‐go decision rules are provided for both the “all‐or‐none” and “at‐least‐one” win criteria. Application of the proposed method is illustrated by drug development programs in the fields of Alzheimer disease and oncology.  相似文献   

7.
This paper describes the distinction between the concept of statistical power and the probability of getting a successful trial. While one can choose a very high statistical power to detect a certain treatment effect, the high statistical power does not necessarily translate to a high success probability if the treatment effect to detect is based on the perceived ability of the drug candidate. The crucial factor hinges on our knowledge of the drug's ability to deliver the effect used to power the study. The paper discusses a framework to calculate the 'average success probability' and demonstrates how uncertainty about the treatment effect could affect the average success probability for a confirmatory trial. It complements an earlier work by O'Hagan et al. (Pharmaceutical Statistics 2005; 4:187-201) published in this journal. Computer codes to calculate the average success probability are included.  相似文献   

8.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

9.
10.
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow‐up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.  相似文献   

11.
Monitoring clinical trials in nonfatal diseases where ethical considerations do not dictate early termination upon demonstration of efficacy often requires examining the interim findings to assure that the protocol-specified sample size will provide sufficient power against the null hypothesis when the alternative hypothesis is true. The sample size may be increased, if necessary to assure adequate power. This paper presents a new method for carrying out such interim power evaluations for observations from normal distributions without unblinding the treatment assignments or discernably affecting the Type 1 error rate. Simulation studies confirm the expected performance of the method.  相似文献   

12.
Monte Carlo simulation is used to evaluate the actual confidence levels of five different approximations for confidence intervals for the probability of success in Markov dependent trials. The approximations involve the conditional probability of success as a nuisance parameter, and the effects of substituting Klotz's (1973), Price's (1976), and a new estimator are also evaluated. The new estimator is less biased and tends to increase the confidence level. A program for calculating the estimator and the confidence interval approximations is available.  相似文献   

13.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

14.
This paper describes how a multistage analysis strategy for a clinical trial can assess a sequence of hypotheses that pertain to successively more stringent criteria for excess risk exclusion or superiority for a primary endpoint with a low event rate. The criteria for assessment can correspond to excess risk of an adverse event or to a guideline for sufficient efficacy as in the case of vaccine trials. The proposed strategy is implemented through a set of interim analyses, and success for one or more of the less stringent criteria at an interim analysis can be the basis for a regulatory submission, whereas the clinical trial continues to accumulate information to address the more stringent, but not futile, criteria. Simulations show that the proposed strategy is satisfactory for control of type I error, sufficient power, and potential success at interim analyses when the true relative risk is more favorable than assumed for the planned sample size. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A strategy for stopping long-term randomized clinical trials with time-to-event as a primary outcome measure has been considered using the criteria requiring multiple consecutive (or non consecutive) rejections at a specified α-level that controls against elevation of type I error. The procedure using two consecutive rejections is presented in this work along with the corresponding α-levels for the interim tests. The boundary cutoff values for these interim levels were determined based on an overall prespecified test size and were calculated using multidimensional integration and/or simulations. The reduction in the interim α-level values that is required to maintain the experiment-wise error rate is found to be modest. The power of the test is evaluated under various alternative accrual and hazard patterns. This procedure provides a more realistic stopping rule in large multi-center trials where it may be undesirable to terminate a trial unless a sustained effect has been demonstrated.  相似文献   

17.
One characterization of group sequential methods uses alpha spending functions to allocate the false positive rate throughout a study. We consider and evaluate several such spending functions as well as the time points of the interim analyses at which they apply. In addition, we evaluate the double triangular test as an alternative procedure that allows for early termination of the trial not only due to efficacy differences between treatments, but also due to lack of such differences. We motivate and illustrate our work by reference to the analysis of survival data from a proposed oncology study. Such group sequential procedures with one or two interim analyses are only slightly less powerful than fixed sample trials, but provide for the strong possibility of early stopping. Therefore, in all situations where they can practically be applied, we recommend their routine use in clinical trials. The double triangular test provides a suitable alternative to the group sequential procedures in that they do not provide for early stopping with acceptance of the null hypothesis. Again, there is only a modest loss in power relative to fixed sample tests. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are unsustainable. These trends have enormous impact on what treatments get to patients, when they get them and how they are used. The statistical framework for supporting decisions in regulated clinical development of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what constitutes a “successful” trial. Many drugs fail in clinical development, adding to the cost of new medicines, and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development process for its probability-based inference. We argue for a Bayesian approach that employs data from other trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute probability statements that are valuable for understanding the magnitude of treatment effect. Such a Bayesian paradigm provides a promising framework for improving statistical inference and regulatory decision making.  相似文献   

19.
Sequential monitoring of efficacy and safety data has become a vital component of modern clinical trials. It affords companies the opportunity to stop studies early in cases when it appears as if the primary objective will not be achieved or when there is clear evidence that the primary objective has already been met. This paper introduces a new concept of the backward conditional hypothesis test (BCHT) to evaluate clinical trial success. Unlike the regular conditional power approach that relies on the probability that the final study result will be statistically significant based on the current interim look, the BCHT was constructed based on the hypothesis test framework. The framework comprises a significant test level as opposed to the arbitrary fixed futility index utilized in the conditional power method. Additionally, the BCHT has proven to be a uniformly most powerful test. Noteworthy features of the BCHT method compared with the conditional power method will be presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The phase II clinical trials often use the binary outcome. Thus, accessing the success rate of the treatment is a primary objective for the phase II clinical trials. Reporting confidence intervals is a common practice for clinical trials. Due to the group sequence design and relatively small sample size, many existing confidence intervals for phase II trials are much conservative. In this paper, we propose a class of confidence intervals for binary outcomes. We also provide a general theory to assess the coverage of confidence intervals for discrete distributions, and hence make recommendations for choosing the parameter in calculating the confidence interval. The proposed method is applied to Simon's [14] optimal two-stage design with numerical studies. The proposed method can be viewed as an alternative approach for the confidence interval for discrete distributions in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号