首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment effect estimators that utilize the propensity score as a balancing score, e.g., matching and blocking estimators are robust to misspecifications of the propensity score model when the misspecification is a balancing score. Such misspecifications arise from using the balancing property of the propensity score in the specification procedure. Here, we study misspecifications of a parametric propensity score model written as a linear predictor in a strictly monotonic function, e.g. a generalized linear model representation. Under mild assumptions we show that for misspecifications, such as not adding enough higher order terms or choosing the wrong link function, the true propensity score is a function of the misspecified model. Hence, the latter does not bring bias to the treatment effect estimator. It is also shown that a misspecification of the propensity score does not necessarily lead to less efficient estimation of the treatment effect. The results of the paper are highlighted in simulations where different misspecifications are studied.  相似文献   

2.
Over the past decades, various principles for causal effect estimation have been proposed, all differing in terms of how they adjust for measured confounders: either via traditional regression adjustment, by adjusting for the expected exposure given those confounders (e.g., the propensity score), or by inversely weighting each subject's data by the likelihood of the observed exposure, given those confounders. When the exposure is measured with error, this raises the question whether these different estimation strategies might be differently affected and whether one of them is to be preferred for that reason. In this article, we investigate this by comparing inverse probability of treatment weighted (IPTW) estimators and doubly robust estimators for the exposure effect in linear marginal structural mean models (MSM) with G-estimators, propensity score (PS) adjusted estimators and ordinary least squares (OLS) estimators for the exposure effect in linear regression models. We find analytically that these estimators are equally affected when exposure misclassification is independent of the confounders, but not otherwise. Simulation studies reveal similar results for time-varying exposures and when the model of interest includes a logistic link.  相似文献   

3.
The generalized doubly robust estimator is proposed for estimating the average treatment effect (ATE) of multiple treatments based on the generalized propensity score (GPS). In medical researches where observational studies are conducted, estimations of ATEs are usually biased since the covariate distributions could be unbalanced among treatments. To overcome this problem, Imbens [The role of the propensity score in estimating dose-response functions, Biometrika 87 (2000), pp. 706–710] and Feng et al. [Generalized propensity score for estimating the average treatment effect of multiple treatments, Stat. Med. (2011), in press. Available at: http://onlinelibrary.wiley.com/doi/10.1002/sim.4168/abstract] proposed weighted estimators that are extensions of a ratio estimator based on GPS to estimate ATEs with multiple treatments. However, the ratio estimator always produces a larger empirical sample variance than the doubly robust estimator, which estimates an ATE between two treatments based on the estimated propensity score (PS). We conduct a simulation study to compare the performance of our proposed estimator with Imbens’ and Feng et al.’s estimators, and simulation results show that our proposed estimator outperforms their estimators in terms of bias, empirical sample variance and mean-squared error of the estimated ATEs.  相似文献   

4.
Risk estimation is an important statistical question for the purposes of selecting a good estimator (i.e., model selection) and assessing its performance (i.e., estimating generalization error). This article introduces a general framework for cross-validation and derives distributional properties of cross-validated risk estimators in the context of estimator selection and performance assessment. Arbitrary classes of estimators are considered, including density estimators and predictors for both continuous and polychotomous outcomes. Results are provided for general full data loss functions (e.g., absolute and squared error, indicator, negative log density). A broad definition of cross-validation is used in order to cover leave-one-out cross-validation, V-fold cross-validation, Monte Carlo cross-validation, and bootstrap procedures. For estimator selection, finite sample risk bounds are derived and applied to establish the asymptotic optimality of cross-validation, in the sense that a selector based on a cross-validated risk estimator performs asymptotically as well as an optimal oracle selector based on the risk under the true, unknown data generating distribution. The asymptotic results are derived under the assumption that the size of the validation sets converges to infinity and hence do not cover leave-one-out cross-validation. For performance assessment, cross-validated risk estimators are shown to be consistent and asymptotically linear for the risk under the true data generating distribution and confidence intervals are derived for this unknown risk. Unlike previously published results, the theorems derived in this and our related articles apply to general data generating distributions, loss functions (i.e., parameters), estimators, and cross-validation procedures.  相似文献   

5.
ABSTRACT

This article investigates the finite sample properties of a range of inference methods for propensity score-based matching and weighting estimators frequently applied to evaluate the average treatment effect on the treated. We analyze both asymptotic approximations and bootstrap methods for computing variances and confidence intervals in our simulation designs, which are based on German register data and U.S. survey data. We vary the design w.r.t. treatment selectivity, effect heterogeneity, share of treated, and sample size. The results suggest that in general, theoretically justified bootstrap procedures (i.e., wild bootstrapping for pair matching and standard bootstrapping for “smoother” treatment effect estimators) dominate the asymptotic approximations in terms of coverage rates for both matching and weighting estimators. Most findings are robust across simulation designs and estimators.  相似文献   

6.
In this paper, the estimation of average treatment effects is examined given that the propensity score is of a parametric form with some unknown parameters. Under the assumption that the treatment is ignorable given some observed characteristics, the MLEs for those unknown parameters in the probability assignment model have been achieved firstly and then three estimators have been defined by the inverse probability weighted, regression and imputation methods, respectively. All the estimators are shown asymptotically normal and more importantly, the substantial efficiency gains of the first two estimates have been obtained theoretically compared with the existing estimators in Hahn (1998) and Hirano et al. (2003), i.e., the inverse weighted probability estimator and the regression estimator have smaller asymptotic variances. Our simulation analysis verifies the theoretical results in terms of biases, SEs and MSEs.  相似文献   

7.
In this article we consider nonparametric estimation of a structural equation model under full additivity constraint. We propose estimators for both the conditional mean and gradient which are consistent, asymptotically normal, oracle efficient, and free from the curse of dimensionality. Monte Carlo simulations support the asymptotic developments. We employ a partially linear extension of our model to study the relationship between child care and cognitive outcomes. Some of our (average) results are consistent with the literature (e.g., negative returns to child care when mothers have higher levels of education). However, as our estimators allow for heterogeneity both across and within groups, we are able to contradict many findings in the literature (e.g., we do not find any significant differences in returns between boys and girls or for formal versus informal child care). Supplementary materials for this article are available online.  相似文献   

8.
In this paper, we investigate four existing and three new confidence interval estimators for the negative binomial proportion (i.e., proportion under inverse/negative binomial sampling). An extensive and systematic comparative study among these confidence interval estimators through Monte Carlo simulations is presented. The performance of these confidence intervals are evaluated in terms of their coverage probabilities and expected interval widths. Our simulation studies suggest that the confidence interval estimator based on saddlepoint approximation is more appealing for large coverage levels (e.g., nominal level≤1% ) whereas the score confidence interval estimator is more desirable for those commonly used coverage levels (e.g., nominal level>1% ). We illustrate these confidence interval construction methods with a real data set from a maternal congenital heart disease study.  相似文献   

9.
In this article, based on the covariate balancing propensity score (CBPS), estimators for the regression coefficients and the population mean are obtained, when the responses of linear models are missing at random. It is proved that the proposed estimators are asymptotically normal. In simulation studies and real example, the proposed estimators show improved performance relative to usual augmented inverse probability weighted estimators.  相似文献   

10.
Abstract

Estimation of average treatment effect is crucial in causal inference for evaluation of treatments or interventions in biostatistics, epidemiology, econometrics, sociology. However, existing estimators require either a propensity score model, an outcome vector model, or both is correctly specified, which is difficult to verify in practice. In this paper, we allow multiple models for both the propensity score models and the outcome models, and then construct a weighting estimator based on observed data by using two-sample empirical likelihood. The resulting estimator is consistent if any one of those multiple models is correctly specified, and thus provides multiple protection on consistency. Moreover, the proposed estimator can attain the semiparametric efficiency bound when one propensity score model and one outcome vector model are correctly specified, without requiring knowledge of which models are correct. Simulations are performed to evaluate the finite sample performance of the proposed estimators. As an application, we analyze the data collected from the AIDS Clinical Trials Group Protocol 175.  相似文献   

11.
In observational studies, the overall aim when fitting a model for the propensity score is to reduce bias for an estimator of the causal effect. To make the assumption of an unconfounded treatment plausible researchers might include many, possibly correlated, covariates in the propensity score model. In this paper, we study how the asymptotic efficiency of matching and inverse probability weighting estimators for average causal effects change when the covariates are correlated. We investigate the case with multivariate normal covariates, a logistic model for the propensity score and linear models for the potential outcomes and show results under different model assumptions. We show that the correlation can both increase and decrease the large sample variances of the estimators, and that the correlation affects the asymptotic efficiency of the estimators differently, both with regard to direction and magnitude. Moreover, the strength of the confounding towards the outcome and the treatment plays an important role.  相似文献   

12.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study.  相似文献   

13.
ABSTRACT

Entropy-type integral functionals of densities are widely used in mathematical statistics, information theory, and computer science. Examples include measures of closeness between distributions (e.g., density power divergence) and uncertainty characteristics for a random variable (e.g., Rényi entropy). In this paper, we study U-statistic estimators for a class of such functionals. The estimators are based on ε-close vector observations in the corresponding independent and identically distributed samples. We prove asymptotic properties of the estimators (consistency and asymptotic normality) under mild integrability and smoothness conditions for the densities. The results can be applied in diverse problems in mathematical statistics and computer science (e.g., distribution identification problems, approximate matching for random databases, two-sample problems).  相似文献   

14.
In survival analysis, treatment effects are commonly evaluated based on survival curves and hazard ratios as causal treatment effects. In observational studies, these estimates may be biased due to confounding factors. The inverse probability of treatment weighted (IPTW) method based on the propensity score is one of the approaches utilized to adjust for confounding factors between binary treatment groups. As a generalization of this methodology, we developed an exact formula for an IPTW log‐rank test based on the generalized propensity score for survival data. This makes it possible to compare the group differences of IPTW Kaplan–Meier estimators of survival curves using an IPTW log‐rank test for multi‐valued treatments. As causal treatment effects, the hazard ratio can be estimated using the IPTW approach. If the treatments correspond to ordered levels of a treatment, the proposed method can be easily extended to the analysis of treatment effect patterns with contrast statistics. In this paper, the proposed method is illustrated with data from the Kyushu Lipid Intervention Study (KLIS), which investigated the primary preventive effects of pravastatin on coronary heart disease (CHD). The results of the proposed method suggested that pravastatin treatment reduces the risk of CHD and that compliance to pravastatin treatment is important for the prevention of CHD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Several estimators of squared prediction error have been suggested for use in model and bandwidth selection problems. Among these are cross-validation, generalized cross-validation and a number of related techniques based on the residual sum of squares. For many situations with squared error loss, e.g. nonparametric smoothing, these estimators have been shown to be asymptotically optimal in the sense that in large samples the estimator minimizing the selection criterion also minimizes squared error loss. However, cross-validation is known not to be asymptotically optimal for some `easy' location problems. We consider selection criteria based on estimators of squared prediction risk for choosing between location estimators. We show that criteria based on adjusted residual sum of squares are not asymptotically optimal for choosing between asymptotically normal location estimators that converge at rate n 1/2but are when the rate of convergence is slower. We also show that leave-one-out cross-validation is not asymptotically optimal for choosing between √ n -differentiable statistics but leave- d -out cross-validation is optimal when d ∞ at the appropriate rate.  相似文献   

16.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

17.
Comparison of different estimation techniques for portfolio selection   总被引:1,自引:0,他引:1  
The main problem in applying the mean-variance portfolio selection consists of the fact that the first two moments of the asset returns are unknown. In practice the optimal portfolio weights have to be estimated. This is usually done by replacing the moments by the classical unbiased sample estimators. We provide a comparison of the exact and the asymptotic distributions of the estimated portfolio weights as well as a sensitivity analysis to shifts in the moments of the asset returns. Furthermore we consider several types of shrinkage estimators for the moments. The corresponding estimators of the portfolio weights are compared with each other and with the portfolio weights based on the sample estimators of the moments. We show how the uncertainty about the portfolio weights can be introduced into the performance measurement of trading strategies. The methodology explains the bad out-of-sample performance of the classical Markowitz procedures.  相似文献   

18.
Post marketing data offer rich information and cost-effective resources for physicians and policy-makers to address some critical scientific questions in clinical practice. However, the complex confounding structures (e.g., nonlinear and nonadditive interactions) embedded in these observational data often pose major analytical challenges for proper analysis to draw valid conclusions. Furthermore, often made available as electronic health records (EHRs), these data are usually massive with hundreds of thousands observational records, which introduce additional computational challenges. In this paper, for comparative effectiveness analysis, we propose a statistically robust yet computationally efficient propensity score (PS) approach to adjust for the complex confounding structures. Specifically, we propose a kernel-based machine learning method for flexibly and robustly PS modeling to obtain valid PS estimation from observational data with complex confounding structures. The estimated propensity score is then used in the second stage analysis to obtain the consistent average treatment effect estimate. An empirical variance estimator based on the bootstrap is adopted. A split-and-merge algorithm is further developed to reduce the computational workload of the proposed method for big data, and to obtain a valid variance estimator of the average treatment effect estimate as a by-product. As shown by extensive numerical studies and an application to postoperative pain EHR data comparative effectiveness analysis, the proposed approach consistently outperforms other competing methods, demonstrating its practical utility.  相似文献   

19.
Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.  相似文献   

20.
In this paper, we conduct a Monte Carlo simulation study to evaluate three propensity score (PS) scenarios for estimating an average treatment effect (ATE) in observational studies when treatment switching exists: (a) ignoring treatment switching in subjects (UPS), (b) removing subjects with treatment switching (RPS), and (c) adjusting for treatment switching effect (APS) with two inverse probability weighting estimators, IPW1 and IPW2. We evaluate these six estimators in terms of bias, mean squared error (MSE), empirical standard error (ESE), and coverage probability (CP) under various simulation scenarios. Simulation results show that the IPW2 estimator with RPS has relatively good performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号