首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

2.
In this article, we assess the performance of the multivariate exponentially weighted moving average (MEWMA) control chart with estimated parameters while considering the practitioner-to-practitioner variability. We evaluate the chart performance in terms of the in-control average run length (ARL) distributional properties; mainly the average (AARL), the standard deviation (SDARL), and some percentiles. We show through simulations that using estimates in place of the in-control parameters may result in an in-control ARL distribution that almost completely lies below the desired value. We also show that even with the use of larger amounts of historical data, there is still a problem with the excessive false alarm rates. We recommend the use of a recently proposed bootstrap-based design technique for adjusting the control limits. The technique is quite effective in controlling the percentage of short in-control ARLs resulting from the estimation error.  相似文献   

3.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

4.
The exponentially weighted moving average (EWMA) chart is often designed assuming the process parameters are known. In practice, the parameters are rarely known and need to be estimated from Phase I samples. Different Phase I samples are used when practitioners construct their own control chart's limits, which leads to the “Phase I between-practitioners” variability in the in-control average run length (ARL) of control charts. The standard deviation of the ARL (SDARL) is a good alternative to quantify this variability in control charts. Based on the SDARL metric, the performance of the EWMA median chart with estimated parameters is investigated in this paper. Some recommendations are given based on the SDARL metric. The results show that the EWMA median chart requires a much larger amount of Phase I data in order to reduce the variation in the in-control ARL up to a reasonable level. Due to the limitation of the amount of the Phase I data, the suggested EWMA median chart is designed with the bootstrap method which provides a good balance between the in-control and out-of-control ARL values.  相似文献   

5.
ABSTRACT

In this article, we introduce new nonparametric Shewhart-type control charts that take into account the location of two order statistics of the test sample as well as the number of observations in that sample that lie between the control limits. Exact formulae for the alarm rate, the run length distribution and the average run length (ARL) are all derived. A key advantage of the new charts is that, due to its nonparametric nature, the false alarm rate (FAR) and in-control run length distribution is the same for all continuous process distributions. Tables are provided for the implementation of the proposed charts for some typical FAR and ARL values. Furthermore, a numerical study carried out reveals that the new charts are quite flexible and efficient in detecting shifts to Lehmann-type out-of-control situations, while they seem preferable from a robustness point of view in comparison with the distribution-free control chart of Balakrishnan et al. (2009).  相似文献   

6.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

7.
Abstract

The performance of attributes control charts is usually evaluated under the assumption of known process parameters (i.e., the nominal proportion of non conforming units or the nominal average number of nonconformities). However, in practice, these process parameters are rarely known and have to be estimated from an in-control Phase I data set. The major contributions of this paper are (a) the derivation of the run length properties of the Run Rules Phase II c and np charts with estimated parameters, particularly focusing on the ARL, SDRL, and 0.05, 0.5, and 0.95 quantiles of the run length distribution; (b) the investigation of the number m of Phase I samples that is needed by these charts in order to obtain similar in-control ARLs to the known parameters case; and (c) the proposition of new specific chart parameters that allow these charts to have approximately the same in-control ARLs as the ones obtained in the known parameters case.  相似文献   

8.
The adaptive exponentially weighted moving average (AEWMA) control chart is a smooth combination of the Shewhart and exponentially weighted moving average (EWMA) control charts. This chart was proposed by Cappizzi and Masarotto (2003) to achieve a reasonable performance for both small and large shifts. Cappizzi and Masarotto (2003) used a pair of shifts in designing their control chart. In this study, however, the process mean shift is considered as a random variable with a certain probability distribution and the AEWMA control chart is optimized for a wide range of mean shifts according to that probability distribution and not just for a pair of shifts. Using the Markov chain technique, the results show that the new optimization design can improve the performance of the AEWMA control chart from an overall point of view relative to the various designs presented by Cappizzi and Masarotto (2003). Optimal design parameters that achieve the desired in-control average run length (ARL) are computed in several cases and formulas used to find approximately their values are given. Using these formulas, the practitioner can compute the optimal design parameters corresponding to any desired in-control ARL without the need to apply the optimization procedure. The results obtained by these formulas are very promising and would particularly facilitate the design of the AEWMA control chart for any in-control ARL value.  相似文献   

9.
ABSTRACT

The effect of parameters estimation on profile monitoring methods has only been studied by a few researchers and only the assumption of a normal response variable has been tackled. However, in some practical situation, the normality assumption is violated and the response variable follows a discrete distribution such as Poisson. In this paper, we evaluate the effect of parameters estimation on the Phase II monitoring of Poisson regression profiles by considering two control charts, namely the Hotelling’s T2 and the multivariate exponentially weighted moving average (MEWMA) charts. Simulation studies in terms of the average run length (ARL) and the standard deviation of the run length (SDRL) are carried out to assess the effect of estimated parameters on the performance of Phase II monitoring approaches. The results reveal that both in-control and out-of-control performances of these charts are adversely affected when the regression parameters are estimated.  相似文献   

10.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

11.
The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible.  相似文献   

12.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

13.
Summary.  The standard cumulative sum (CUSUM), risk-adjusted CUSUM and Shiryayev–Roberts schemes for monitoring surgical performance are compared. We find that both CUSUM schemes are comparable in run length performance except when there is a high heterogeneity of surgical risks, in which case the risk-adjusted CUSUM scheme is more sensitive in detecting a shift in surgical performance. The Shiryayev–Roberts scheme is found to be less sensitive compared with the CUSUM schemes in detecting a deterioration in surgical performance. Using the Markov chain method, the exact average run length of a standard CUSUM scheme can be computed whereas the average run length of a risk-adjusted CUSUM scheme is approximated. For a risk-adjusted CUSUM scheme, the accuracy of the average run length depends on the fineness of the discretization of CUSUM values, which relies on the chart limit, shift to be detected optimally and in-control surgical risk distribution. A sensitivity analysis shows that the risk-adjusted CUSUM and Shiryayev–Roberts schemes still perform moderately well in detecting a deterioration and an improvement in surgical performances respectively even though there is a misspecification of the in-control surgical risk distribution. In general, the run length performance of the Shiryayev–Roberts scheme is comparatively less sensitive to a misspecification of the in-control surgical risk distribution.  相似文献   

14.
CUSUM control chart has been widely used for monitoring the process variance. It is usually used assuming that the nominal process variance is known. However, several researchers have shown that the ability of control charts to signal when a process is out of control is seriously affected unless process parameters are estimated from a large in-control Phase I data set. In this paper we derive the run length properties of a CUSUM chart for monitoring dispersion with estimated process variance and we evaluate the performance of this chart by comparing it with the same chart but with assumed known process parameters.  相似文献   

15.

In this article we propose three distribution-free (or nonparametric) statistical quality control charts for monitoring a process center when an in-control target center is not specified. These charts are of the Shewhart-type, the exponentially moving average-type, and the cumulative sum-type. The constructions of the proposed charts require the availability of an initial reference sample taken when the process was operating in-control to calculate an estimator for the unknown in-control target process center. This estimated center is then used in the calculation of signed-rank-like statistics based on grouped observations taken periodically from the process output. As long as the in-control process underlying distribution is continuous and symmetric, the proposed charts have a constant in-control average run length and a constant false alarm rate irrespective of the process underlying distribution. Other advantages of the proposed distribution-free charts include their robustness against outliers and their superior efficiency over the traditional normal-based control charts when applied to processes with moderate- or heavy-tailed underlying distributions, such as the double exponential or the Cauchy distributions.  相似文献   

16.
17.
This paper proposes an efficient stratified randomized response model based on Chang et al.'s (2004) model. We have obtained the variance of the proposed estimator of πs, the proportion of the respondents in the population belonging to a sensitive group, under proportional and Neyman allocations. It is shown that the estimator based on the proposed model is more efficient than the Chang et al.'s (2004) estimator under both proportional as well as Neyman allocations, Hong et al.'s (1994) estimator and Kim and Warde's (2004) estimator. Numerical illustration and pictorial representation are given in support of the present study.  相似文献   

18.
CUSUM-schemes with variable sampling intervals and sample sizes are introduced and investigated for situations where a production process switches at an unknown time from an in-control state to an out-of-control state. Suitable performance criteria are derived to compare CUSUM-schemes with this additional feature. The gain from this feature may be substantial. Without seriously affecting the run length properties under the out-of-control state it is possible to simultaneously reduce the average number of sampled items per time unit (25% to 50%) and to increase the average run length under the in-control state (40% to 50%). Furthermore it is shown that one may restrict to simple schemes that have only two different sample sizes and equally spaced tim-iintervals between the observations.  相似文献   

19.
Interval-censored data naturally arise in many studies. For their regression analysis, many approaches have been proposed under various models and for most of them, the inference is carried out based on the asymptotic normality. In particular, Zhang et al. (2005) discussed the procedure under the linear transformation model. It is well-known that the symmetric property implied by the normal distribution may not be appropriate sometimes. Also the method could underestimate the variance of estimated parameters. This paper proposes an empirical likelihood-based procedure for the problem. Simulation and the analysis of a real data set are conducted to assess the performance of the procedure.  相似文献   

20.
Abstract

Profile monitoring is applied when the quality of a product or a process can be determined by the relationship between a response variable and one or more independent variables. In most Phase II monitoring approaches, it is assumed that the process parameters are known. However, it is obvious that this assumption is not valid in many real-world applications. In fact, the process parameters should be estimated based on the in-control Phase I samples. In this study, the effect of parameter estimation on the performance of four Phase II control charts for monitoring multivariate multiple linear profiles is evaluated. In addition, since the accuracy of the parameter estimation has a significant impact on the performance of Phase II control charts, a new cluster-based approach is developed to address this effect. Moreover, we evaluate and compare the performance of the proposed approach with a previous approach in terms of two metrics, average of average run length and its standard deviation, which are used for considering practitioner-to-practitioner variability. In this approach, it is not necessary to know the distribution of the chart statistic. Therefore, in addition to ease of use, the proposed approach can be applied to other type of profiles. The superior performance of the proposed method compared to the competing one is shown in terms of all metrics. Based on the results obtained, our method yields less bias with small-variance Phase I estimates compared to the competing approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号