首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

2.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

3.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

4.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

5.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

6.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

7.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

8.
This paper addresses the estimation for the unknown scale parameter of the half-logistic distribution based on a Type-I progressively hybrid censoring scheme. We evaluate the maximum likelihood estimate (MLE) via numerical method, and EM algorithm, and also the approximate maximum likelihood estimate (AMLE). We use a modified acceptance rejection method to obtain the Bayes estimate and corresponding highest posterior confidence intervals. We perform Monte Carlo simulations to compare the performances of the different methods, and we analyze one dataset for illustrative purposes.  相似文献   

9.
The Type-II progressive hybrid censoring scheme has received wide attention, but it has a disadvantage in that long time may be required to complete the life test. The generalized progressive Type-II hybrid censoring scheme has recently been proposed to solve this problem. Under the censoring scheme, the time on test does not exceed a predetermined time. In this paper, we propose a robust Bayesian approach based on a hierarchical structure when the generalized progressive Type-II hybrid censored sample has a two-parameter exponential distribution. For unknown parameters, marginal posterior distributions are provided in closed forms, and their statistical properties are discussed. To examine the robustness of the proposed method, Monte Carlo simulations are conducted and a real data set is analyzed. Further, the quality and adequacy of the proposed model are evaluated in an analysis based on the real data.  相似文献   

10.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

11.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

12.
ABSTRACT

In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.  相似文献   

13.
The hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes, has been extended to the case of progressive censoring schemes by Kundu and Joarder [Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data Anal. 50 (2006), pp. 2509–2528] and Childs et al. [Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, in Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta, M. Nikulin, N. Limnios, and C. Huber-Carol, eds., Birkhäuser, Boston, MA, 2007, pp. 323–334]. In this paper, we derive a simple expression for the Fisher information contained in Type-I and Type-II progressively hybrid censored data. An illustrative example is provided applicable to a scaled-exponential distribution to demonstrate our methodologies.  相似文献   

14.
Arnab Koley  Ayon Ganguly 《Statistics》2017,51(6):1304-1325
Kundu and Gupta [Analysis of hybrid life-tests in presence of competing risks. Metrica. 2007;65:159–170] provided the analysis of Type-I hybrid censored competing risks data, when the lifetime distributions of the competing cause of failures follows exponential distribution. In this paper, we consider the analysis of Type-II hybrid censored competing risks data. It is assumed that latent lifetime distributions of the competing causes of failures follow independent exponential distributions with different scale parameters. It is observed that the maximum likelihood estimators of the unknown parameters do not always exist. We propose the modified estimators of the scale parameters, which coincide with the corresponding maximum likelihood estimators when they exist, and asymptotically they are equivalent. We obtain the exact distribution of the proposed estimators. Using the exact distributions of the proposed estimators, associated confidence intervals are obtained. The asymptotic and bootstrap confidence intervals of the unknown parameters are also provided. Further, Bayesian inference of some unknown parametric functions under a very flexible Beta-Gamma prior is considered. Bayes estimators and associated credible intervals of the unknown parameters are obtained using the Monte Carlo method. Extensive Monte Carlo simulations are performed to see the effectiveness of the proposed estimators and one real data set has been analysed for the illustrative purposes. It is observed that the proposed model and the method work quite well for this data set.  相似文献   

15.
In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.  相似文献   

16.
This article considers the statistical analysis of dependent competing risks model with incomplete data under Type-I progressive hybrid censored condition using a Marshall–Olkin bivariate Weibull distribution. Based on the expectation maximum algorithm, maximum likelihood estimators for the unknown parameters are obtained, and the missing information principle is used to obtain the observed information matrix. As the maximum likelihood approach may fail when the available information is insufficient, Bayesian approach incorporated with auxiliary variables is developed for estimating the parameters of the model, and Monte Carlo method is employed to construct the highest posterior density credible intervals. The proposed method is illustrated through a numerical example under different progressive censoring schemes and masking probabilities. Finally, a real data set is analyzed for illustrative purposes.  相似文献   

17.
The mixture of Type I and Type I1 censoring schemes, called the hybrid censoring, is quite important in life–testing experiments. Epstein(1954, 1960) introduced this testing scheme and proposed a two–sided confidence interval to estimate the mean lifetime, θ, when the underlying lifetime distribution is assumed to be exponential. There are some two–sided confidence intervals and credible intervals proposed by Fairbanks et al. (1982) and Draper and Guttman (1987) respectively. In this paper we obtain the exact two–sided confidence interval of θ following the approach of Chen and Bhattacharya (1988). We also obtain the asymptotic confidence intervals in the Hybrid censoring case. It is important to observe that the results for Type I and Type II censoring schemes can be obtained as particular cases of the Hybrid censoring scheme. We analyze one data set and compare different methods by Monte Carlo simulations.  相似文献   

18.
This paper describes the Bayesian inference and prediction of the two-parameter Weibull distribution when the data are Type-II censored data. The aim of this paper is twofold. First we consider the Bayesian inference of the unknown parameters under different loss functions. The Bayes estimates cannot be obtained in closed form. We use Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples and it has been used to compute the Bayes estimates and also to construct symmetric credible intervals. Further we consider the Bayes prediction of the future order statistics based on the observed sample. We consider the posterior predictive density of the future observations and also construct a predictive interval with a given coverage probability. Monte Carlo simulations are performed to compare different methods and one data analysis is performed for illustration purposes.  相似文献   

19.
This paper considers the statistical analysis for competing risks model under the Type-I progressively hybrid censoring from a Weibull distribution. We derive the maximum likelihood estimates and the approximate maximum likelihood estimates of the unknown parameters. We then use the bootstrap method to construct the confidence intervals. Based on the non informative prior, a sampling algorithm using the acceptance–rejection sampling method is presented to obtain the Bayes estimates, and Monte Carlo method is employed to construct the highest posterior density credible intervals. The simulation results are provided to show the effectiveness of all the methods discussed here and one data set is analyzed.  相似文献   

20.
Adaptive Type-II progressive censoring schemes have been shown to be useful in striking a balance between statistical estimation efficiency and the time spent on a life-testing experiment. In this article, some general statistical properties of an adaptive Type-II progressive censoring scheme are first investigated. A bias correction procedure is proposed to reduce the bias of the maximum likelihood estimators (MLEs). We then focus on the extreme value distributed lifetimes and derive the Fisher information matrix for the MLEs based on these properties. Four different approaches are proposed to construct confidence intervals for the parameters of the extreme value distribution. Performance of these methods is compared through an extensive Monte Carlo simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号