首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

2.
In this paper, we obtain some results for the asymptotic behavior of the tail probability of a random sum Sτ = ∑τk = 1Xk, where the summands Xk, k = 1, 2, …, are conditionally dependent random variables with a common subexponential distribution F, and the random number τ is a non negative integer-valued random variable, independent of {Xk: k ? 1}.  相似文献   

3.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

4.
A random vector X = (X 1,…,X n ) is negatively associated if and only if for every pair of partitions X 1 = (X π(1),…,X π(k)), X 2 = (X π(k+1),…,X π(n)) of X , P( X 1 ? A, X 2 ? B) ≤ P( X 1 ? A)P( X 2 ? B) whenever A and B are open upper sets and π is any permutation of {1,…,n}. In this paper, we develop some of concepts of negative dependence, which are weaker than negative association but stronger than negative orthant dependence by requiring the above inequality to hold only for some upper sets A and B and applying the arguments in Shaked.  相似文献   

5.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

6.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

7.
8.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

9.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

10.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

11.
This paper investigates tail behavior of the randomly weighted sum ∑nk = 1θkXk and reaches an asymptotic formula, where Xk, 1 ? k ? n, are real-valued linearly wide quadrant-dependent (LWQD) random variables with a common heavy-tailed distribution, and θk, 1 ? k ? n, independent of Xk, 1 ? k ? n, are n non-negative random variables without any dependence assumptions. The LWQD structure includes the linearly negative quadrant-dependent structure, the negatively associated structure, and hence the independence structure. On the other hand, it also includes some positively dependent random variables and some other random variables. The obtained result coincides with the existing ones.  相似文献   

12.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

13.
14.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

15.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

16.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

17.
For X1, …, XN a random sample from a distribution F, let the process SδN(t) be defined as where K2N = σNi=1(ci ? c?)2 and R xi, + Δd, is the rank of Xi + Δdi, among X1 + Δd1, …, XN + ΔdN. The purpose of this note is to prove that, under certain regularity conditions on F and on the constants ci and di, SΔN (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C. The special case of two samples is considered.  相似文献   

18.
Let X be a po-normal random vector with unknown µ and unknown covariance matrix ∑ and let X be partitioned as X = (X (1), …, X (r))′ where X(j)is a subvector of X with dimension pjsuch that ∑r j=1Pj = P0. Some admissible tests are derived for testing H0: μ = 0 versus H1: μ ¦0 based on a sample drawn from the whole vector X of dimension p and r additional samples drawn from X(1), X(2), …, X(r) respectively, All (r+1) samples are assumed to be independent. The distribution of some of the tests' statistics involved are also derived.  相似文献   

19.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

20.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号