首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phase II basket trial in oncology is a novel design that enables the simultaneous assessment of treatment effects of one anti-cancer targeted agent in multiple cancer types. Biomarkers could potentially associate with the clinical outcomes and re-define clinically meaningful treatment effects. It is therefore natural to develop a biomarker-based basket design to allow the prospective enrichment of the trials with the adaptive selection of the biomarker-positive (BM+) subjects who are most sensitive to the experimental treatment. We propose a two-stage phase II adaptive biomarker basket (ABB) design based on a potential predictive biomarker measured on a continuous scale. At Stage 1, the design incorporates a biomarker cutoff estimation procedure via a hierarchical Bayesian model with biomarker as a covariate (HBMbc). At Stage 2, the design enrolls only BM+ subjects, defined as those with the biomarker values exceeding the biomarker cutoff within each cancer type, and subsequently assesses the early efficacy and/or futility stopping through the pre-defined interim analyses. At the end of the trial, the response rate of all BM+ subjects for each cancer type can guide drug development, while the data from all subjects can be used to further model the relationship between the biomarker value and the clinical outcome for potential future research. The extensive simulation studies show that the ABB design could produce a good estimate of the biomarker cutoff to select BM+ subjects with high accuracy and could outperform the existing phase II basket biomarker cutoff design under various scenarios.  相似文献   

2.
For a trial with primary endpoint overall survival for a molecule with curative potential, statistical methods that rely on the proportional hazards assumption may underestimate the power and the time to final analysis. We show how a cure proportion model can be used to get the necessary number of events and appropriate timing via simulation. If phase 1 results for the new drug are exceptional and/or the medical need in the target population is high, a phase 3 trial might be initiated after phase 1. Building in a futility interim analysis into such a pivotal trial may mitigate the uncertainty of moving directly to phase 3. However, if cure is possible, overall survival might not be mature enough at the interim to support a futility decision. We propose to base this decision on an intermediate endpoint that is sufficiently associated with survival. Planning for such an interim can be interpreted as making a randomized phase 2 trial a part of the pivotal trial: If stopped at the interim, the trial data would be analyzed, and a decision on a subsequent phase 3 trial would be made. If the trial continues at the interim, then the phase 3 trial is already underway. To select a futility boundary, a mechanistic simulation model that connects the intermediate endpoint and survival is proposed. We illustrate how this approach was used to design a pivotal randomized trial in acute myeloid leukemia and discuss historical data that informed the simulation model and operational challenges when implementing it.  相似文献   

3.
Abstract

For clinical trials, molecular heterogeneity has played a more important role recently. Many novel clinical trial designs prospectively incorporate molecular information to evaluation of treatment effects. In this paper, an adaptive procedure incorporating a non-pre-specified genomic biomarker is employed in the interim of a conventional trial. A non-pre-specified binary genomic biomarker, which is predictive of treatment effect, is used to classify study patients into two mutually exclusive subgroups at the interim review. According to the observations at the interim stage, adaptations such as adjusting sample size or shifting eligibility of study patients are then made in case of different scenarios.  相似文献   

4.
This paper describes how a multistage analysis strategy for a clinical trial can assess a sequence of hypotheses that pertain to successively more stringent criteria for excess risk exclusion or superiority for a primary endpoint with a low event rate. The criteria for assessment can correspond to excess risk of an adverse event or to a guideline for sufficient efficacy as in the case of vaccine trials. The proposed strategy is implemented through a set of interim analyses, and success for one or more of the less stringent criteria at an interim analysis can be the basis for a regulatory submission, whereas the clinical trial continues to accumulate information to address the more stringent, but not futile, criteria. Simulations show that the proposed strategy is satisfactory for control of type I error, sufficient power, and potential success at interim analyses when the true relative risk is more favorable than assumed for the planned sample size. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
For the case of a one‐sample experiment with known variance σ2=1, it has been shown that at interim analysis the sample size (SS) may be increased by any arbitrary amount provided: (1) The conditional power (CP) at interim is ?50% and (2) there can be no decision to decrease the SS (stop the trial early). In this paper we verify this result for the case of a two‐sample experiment with proportional SS in the treatment groups and an arbitrary common variance. Numerous authors have presented the formula for the CP at interim for a two‐sample test with equal SS in the treatment groups and an arbitrary common variance, for both the one‐ and two‐sided hypothesis tests. In this paper we derive the corresponding formula for the case of unequal, but proportional SS in the treatment groups for both one‐sided superiority and two‐sided hypothesis tests. Finally, we present an SAS macro for doing this calculation and provide a worked out hypothetical example. In discussion we note that this type of trial design trades the ability to stop early (for lack of efficacy) for the elimination of the Type I error penalty. The loss of early stopping requires that such a design employs a data monitoring committee, blinding of the sponsor to the interim calculations, and pre‐planning of how much and under what conditions to increase the SS and that this all be formally written into an interim analysis plan before the start of the study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Group sequential trialswith time to event end points can be complicated to design. Notonly are there unlimited choices for the number of events requiredat each stage, but for each of these choices, there are unlimitedcombinations of accrual and follow-up at each stage that providethe required events. Methods are presented for determining optimalcombinations of accrual and follow-up for two-stage clinicaltrials with time to event end points. Optimization is based onminimizing the expected total study length as a function of theexpected accrual duration or sample size while providing an appropriateoverall size and power. Optimal values of expected accrual durationand minimum expected total study length are given assuming anexponential proportional hazards model comparing two treatmentgroups. The expected total study length can be substantiallydecreased by including a follow-up period during which accrualis suspended. Conditions that warrant an interim follow-up periodare considered, and the gain in efficiency achieved by includingan interim follow-up period is quantified. The gain in efficiencyshould be weighed against the practical difficulties in implementingsuch designs. An example is given to illustrate the use of thesetechniques in designing a clinical trial to compare two chemotherapyregimens for lung cancer. Practical considerations of includingan interim follow-up period are discussed.  相似文献   

7.
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.  相似文献   

8.
Randomised controlled trials are considered the gold standard in trial design. However, phase II oncology trials with a binary outcome are often single-arm. Although a number of reasons exist for choosing a single-arm trial, the primary reason is that single-arm designs require fewer participants than their randomised equivalents. Therefore, the development of novel methodology that makes randomised designs more efficient is of value to the trials community. This article introduces a randomised two-arm binary outcome trial design that includes stochastic curtailment (SC), allowing for the possibility of stopping a trial before the final conclusions are known with certainty. In addition to SC, the proposed design involves the use of a randomised block design, which allows investigators to control the number of interim analyses. This approach is compared with existing designs that also use early stopping, through the use of a loss function comprised of a weighted sum of design characteristics. Comparisons are also made using an example from a real trial. The comparisons show that for many possible loss functions, the proposed design is superior to existing designs. Further, the proposed design may be more practical, by allowing a flexible number of interim analyses. One existing design produces superior design realisations when the anticipated response rate is low. However, when using this design, the probability of rejecting the null hypothesis is sensitive to misspecification of the null response rate. Therefore, when considering randomised designs in phase II, we recommend the proposed approach be preferred over other sequential designs.  相似文献   

9.
Two-stage designs offer substantial advantages for early phase II studies. The interim analysis following the first stage allows the study to be stopped for futility, or more positively, it might lead to early progression to the trials needed for late phase II and phase III. If the study is to continue to its second stage, then there is an opportunity for a revision of the total sample size. Two-stage designs have been implemented widely in oncology studies in which there is a single treatment arm and patient responses are binary. In this paper the case of two-arm comparative studies in which responses are quantitative is considered. This setting is common in therapeutic areas other than oncology. It will be assumed that observations are normally distributed, but that there is some doubt concerning their standard deviation, motivating the need for sample size review. The work reported has been motivated by a study in diabetic neuropathic pain, and the development of the design for that trial is described in detail.  相似文献   

10.
There is considerable debate surrounding the choice of methods to estimate information fraction for futility monitoring in a randomized non-inferiority maximum duration trial. This question was motivated by a pediatric oncology study that aimed to establish non-inferiority for two primary outcomes. While non-inferiority was determined for one outcome, the futility monitoring of the other outcome failed to stop the trial early, despite accumulating evidence of inferiority. For a one-sided trial design for which the intervention is inferior to the standard therapy, futility monitoring should provide the opportunity to terminate the trial early. Our research focuses on the Total Control Only (TCO) method, which is defined as a ratio of observed events to total events exclusively within the standard treatment regimen. We investigate its properties in stopping a trial early in favor of inferiority. Simulation results comparing the TCO method with alternative methods, one based on the assumption of an inferior treatment effect (TH0), and the other based on a specified hypothesis of a non-inferior treatment effect (THA), were provided under various pediatric oncology trial design settings. The TCO method is the only method that provides unbiased information fraction estimates regardless of the hypothesis assumptions and exhibits a good power and a comparable type I error rate at each interim analysis compared to other methods. Although none of the methods is uniformly superior on all criteria, the TCO method possesses favorable characteristics, making it a compelling choice for estimating the information fraction when the aim is to reduce cancer treatment-related adverse outcomes.  相似文献   

11.
Phase II trials evaluate whether a new drug or a new therapy is worth further pursuing or certain treatments are feasible or not. A typical phase II is a single arm (open label) trial with a binary clinical endpoint (response to therapy). Although many oncology Phase II clinical trials are designed with a two-stage procedure, multi-stage design for phase II cancer clinical trials are now feasible due to increased capability of data capture. Such design adjusts for multiple analyses and variations in analysis time, and provides greater flexibility such as minimizing the number of patients treated on an ineffective therapy and identifying the minimum number of patients needed to evaluate whether the trial would warrant further development. In most of the NIH sponsored studies, the early stopping rule is determined so that the number of patients treated on an ineffective therapy is minimized. In pharmaceutical trials, it is also of importance to know as early as possible if the trial is highly promising and what is the likelihood the early conclusion can sustain. Although various methods are available to address these issues, practitioners often use disparate methods for addressing different issues and do not realize a single unified method exists. This article shows how to utilize a unified approach via a fully sequential procedure, the sequential conditional probability ratio test, to address the multiple needs of a phase II trial. We show the fully sequential program can be used to derive an optimized efficient multi-stage design for either a low activity or a high activity, to identify the minimum number of patients required to assess whether a new drug warrants further study and to adjust for unplanned interim analyses. In addition, we calculate a probability of discordance that the statistical test will conclude otherwise should the trial continue to the planned end that is usually at the sample size of a fixed sample design. This probability can be used to aid in decision making in a drug development program. All computations are based on exact binomial distribution.  相似文献   

12.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

13.
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well‐known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph‐based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid‐trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Clinical trials in the era of precision cancer medicine aim to identify and validate biomarker signatures which can guide the assignment of individually optimal treatments to patients. In this article, we propose a group sequential randomized phase II design, which updates the biomarker signature as the trial goes on, utilizes enrichment strategies for patient selection, and uses Bayesian response-adaptive randomization for treatment assignment. To evaluate the performance of the new design, in addition to the commonly considered criteria of Type I error and power, we propose four new criteria measuring the benefits and losses for individuals both inside and outside of the clinical trial. Compared with designs with equal randomization, the proposed design gives trial participants a better chance to receive their personalized optimal treatments and thus results in a higher response rate on the trial. This design increases the chance to discover a successful new drug by an adaptive enrichment strategy, i.e. identification and selective enrollment of a subset of patients who are sensitive to the experimental therapies. Simulation studies demonstrate these advantages of the proposed design. It is illustrated by an example based on an actual clinical trial in non-small-cell lung cancer.  相似文献   

15.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

16.
Summary. Interim analysis is important in a large clinical trial for ethical and cost considerations. Sometimes, an interim analysis needs to be performed at an earlier than planned time point. In that case, methods using stochastic curtailment are useful in examining the data for early stopping while controlling the inflation of type I and type II errors. We consider a three-arm randomized study of treatments to reduce perioperative blood loss following major surgery. Owing to slow accrual, an unplanned interim analysis was required by the study team to determine whether the study should be continued. We distinguish two different cases: when all treatments are under direct comparison and when one of the treatments is a control. We used simulations to study the operating characteristics of five different stochastic curtailment methods. We also considered the influence of timing of the interim analyses on the type I error and power of the test. We found that the type I error and power between the different methods can be quite different. The analysis for the perioperative blood loss trial was carried out at approximately a quarter of the planned sample size. We found that there is little evidence that the active treatments are better than a placebo and recommended closure of the trial.  相似文献   

17.
Interest in confirmatory adaptive combined phase II/III studies with treatment selection has increased in the past few years. These studies start comparing several treatments with a control. One (or more) treatment(s) is then selected after the first stage based on the available information at an interim analysis, including interim data from the ongoing trial, external information and expert knowledge. Recruitment continues, but now only for the selected treatment(s) and the control, possibly in combination with a sample size reassessment. The final analysis of the selected treatment(s) includes the patients from both stages and is performed such that the overall Type I error rate is strictly controlled, thus providing confirmatory evidence of efficacy at the final analysis. In this paper we describe two approaches to control the Type I error rate in adaptive designs with sample size reassessment and/or treatment selection. The first method adjusts the critical value using a simulation-based approach, which incorporates the number of patients at an interim analysis, the true response rates, the treatment selection rule, etc. We discuss the underlying assumptions of simulation-based procedures and give several examples where the Type I error rate is not controlled if some of the assumptions are violated. The second method is an adaptive Bonferroni-Holm test procedure based on conditional error rates of the individual treatment-control comparisons. We show that this procedure controls the Type I error rate, even if a deviation from a pre-planned adaptation rule or the time point of such a decision is necessary.  相似文献   

18.
Since the treatment effect of an experimental drug is generally not known at the onset of a clinical trial, it may be wise to allow for an adjustment in the sample size after an interim analysis of the unblinded data. Using a particular adaptive test statistic, a procedure is demonstrated for finding the optimal design. Both the timing of the interim analysis and the way the sample size is adjusted can influence the power of the resulting procedure. It is possible to have smaller average sample size using the adaptive test statistic, even if the initial estimate of the treatment effect is wrong, compared to the sample size needed using a standard test statistic without an interim look and assuming a correct initial estimate of the effect. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
With the development of molecular targeted drugs, predictive biomarkers have played an increasingly important role in identifying patients who are likely to receive clinically meaningful benefits from experimental drugs (i.e., sensitive subpopulation) even in early clinical trials. For continuous biomarkers, such as mRNA levels, it is challenging to determine cutoff value for the sensitive subpopulation, and widely accepted study designs and statistical approaches are not currently available. In this paper, we propose the Bayesian adaptive patient enrollment restriction (BAPER) approach to identify the sensitive subpopulation while restricting enrollment of patients from the insensitive subpopulation based on the results of interim analyses, in a randomized phase 2 trial with time‐to‐endpoint outcome and a single biomarker. Applying a four‐parameter change‐point model to the relationship between the biomarker and hazard ratio, we calculate the posterior distribution of the cutoff value that exhibits the target hazard ratio and use it for the restriction of the enrollment and the identification of the sensitive subpopulation. We also consider interim monitoring rules for termination because of futility or efficacy. Extensive simulations demonstrated that our proposed approach reduced the number of enrolled patients from the insensitive subpopulation, relative to an approach with no enrollment restriction, without reducing the likelihood of a correct decision for next trial (no‐go, go with entire population, or go with sensitive subpopulation) or correct identification of the sensitive subpopulation. Additionally, the four‐parameter change‐point model had a better performance over a wide range of simulation scenarios than a commonly used dichotomization approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Sequential administration of immunotherapy following radiotherapy (immunoRT) has attracted much attention in cancer research. Due to its unique feature that radiotherapy upregulates the expression of a predictive biomarker for immunotherapy, novel clinical trial designs are needed for immunoRT to identify patient subgroups and the optimal dose for each subgroup. In this article, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose radiotherapy for this purpose. We construct a latent subgroup membership variable and model it as a function of the baseline and pre-post radiotherapy change in the predictive biomarker measurements. Conditional on the latent subgroup membership of each patient, we jointly model the continuous immune response and the binary efficacy outcome using plateau models, and model toxicity using the equivalent toxicity score approach to account for toxicity grades. During the trial, based on accumulating data, we continuously update model estimates and adaptively randomize patients to admissible doses. Simulation studies and an illustrative trial application show that our design has good operating characteristics in terms of identifying both patient subgroups and the optimal dose for each subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号